Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(2): 688-695, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180811

ABSTRACT

The effects of surface roughness on the performance of the Zn metal anode in aqueous electrolytes are investigated by experiments and computational simulations. Smooth surfaces can homogenize the nucleation and growth of Zn, which helps to form a flat Zn anode under high current density. In spite of these advantages, the whole surface of the smooth electrode serves as the reactive contact area for parasitic reactions, generating severe hydrogen evolution, corrosion, and byproduct formation, which seriously hinder the long-term cycle stability of the Zn anode. To trade off this double-sided effect, we identify a medium degree of surface roughness that could stabilize the Zn anode for 1000 h cycling at 1.0 mAh cm-2. The electrode also enabled stable cycling for 800 h at a high current density of 5.0 mAh cm-2. This naked Zn metal anode with optimized surface roughness holds great promise for direct use in aqueous zinc ion batteries.

2.
Viruses ; 15(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38005855

ABSTRACT

OBJECTIVES: Infectious bursal disease virus (IBDV) is a highly contagious, acutely infectious agent that causes immunosuppression in chickens. We expressed IBDV VP2 proteins in Escherichia coli (E. coli) to develop an effective virus-like-particles (VLPs) vaccine and evaluated its immunogenicity. METHODS: The VLPs produced in E. coli were used as an immunogen mixed with a water-in-mineral-oil adjuvant (MontanideTM ISA 71 VG, ISA 71 RVG) or a white oil (7#) adjuvant. VLPs without an adjuvant, commercial subunit vaccine, inactivated vaccine, and attenuated vaccine were used as controls. These test vaccines were intramuscularly injected into 19-day-old SPF chickens, which were challenged with the IBDV virulent strain at 30 days after vaccination. RESULTS: The adjuvants boosted antibody production, and the adjuvant groups (except white oil) produced higher antibody levels than the non-adjuvanted controls and the commercial vaccine groups. In terms of cellular immunity, the VLPs plus adjuvant combinations produced higher levels of cytokines, IL-2, IL-4, and IFN-γ than the controls. CONCLUSION: IBDV VLPs plus the ISA 71 RVG adjuvant can be used as an optimal vaccine combination for improving the immune efficacy of IBD subunit vaccines, which can protect against the virulent strain.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Chickens , Escherichia coli/genetics , Antibodies, Viral , Antibody Formation , Adjuvants, Immunologic , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary
3.
Angew Chem Int Ed Engl ; 62(8): e202216189, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36567260

ABSTRACT

Electrolyte design has become ever more important to enhance the performance of lithium-ion batteries (LIBs). However, the flammability issue and high reactivity of the conventional electrolytes remain a major problem, especially when the LIBs are operated at high voltage and extreme temperatures. Herein, we design a novel non-flammable fluorinated ester electrolyte that enables high cycling stability in wide-temperature variations (e.g., -50 °C-60 °C) and superior power capability (fast charge rates up to 5.0 C) for the graphite||LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) battery at high voltage (i.e., >4.3 V vs. Li/Li+ ). Moreover, this work sheds new light on the dynamic evolution and interaction among the Li+ , solvent, and anion at the molecular level. By elucidating the fundamental relationship between the Li+ solvation structure and electrochemical performance, we can facilitate the development of high-safety and high-energy-density batteries operating in harsh conditions.

4.
Front Vet Sci ; 9: 1006895, 2022.
Article in English | MEDLINE | ID: mdl-36157191

ABSTRACT

African swine fever (ASF) is a potent infectious disease with detrimental effects on the global swine industry and no currently vaccine available. The emergence of low-virulence CD2v-deleted mutants manifested as non-hemadsorption (non-HAD) strains represents a significant challenge to the prevention and control of ASF. In this study, we aimed to establish an indirect ELISA (IELISA) method for the identification of ASFV wild-type and CD2v-deleted strains. We integrated the CD2v protein extracellular domain sequence (CD2v-Ex, 1-588 bp) of the highly pathogenic strain China/2018/AnhuiXCGQ into the genome of suspension culture-adapted Chinese hamster Ovary-S (CHO-S) cells using lentivirus vectors (LVs). By screening, we identified a monoclonal CHO-S cell line that stably expressed secretory CD2v-Ex Protein. We then used the purified CD2v-Ex Protein as the detection antigen to establish an indirect ELISA method (CD2v-IELISA) for identification of the ASFV wild-type and CD2v-Deleted (CD2v-) strains. The CD2v-IELISA method showed excellent specificity with no cross-reaction with serum samples infected with ASFV (CD2v-), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), porcine circovirus (PCV), porcine pseudorabies virus (PRV), swine foot and mouth disease virus (FMDV) and porcine epidemic diarrhea virus (PEDV). Furthermore, this method showed high sensitivity, allowing identification of ASFV-infected clinical serum samples up to a dilution of 1:2,560. The coefficient of variation both in and between batches was <10% with good reproducibility and a high compliance rate of 99.4%. This CD2v-IELISA method developed here is of great significance for the prevention, control and purification of ASFV.

5.
Viruses ; 15(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36680174

ABSTRACT

African swine fever virus (ASFV) is a highly infectious viral pathogen that endangers the global pig industry, and no effective vaccine is available thus far. The CD2v protein is a glycoprotein on the outer envelope of ASFV, which mediates the transmission of the virus in the blood and recognition of the virus serotype, playing an important role in ASFV vaccine development and disease prevention. Here, we generated two specific monoclonal antibodies (mAbs), 6C11 and 8F12 (subtype IgG1/kappa-type), against the ASFV CD2v extracellular domain (CD2v-ex, GenBank: MK128995.1, 1-588 bp) and characterized their specificity. Peptide scanning technology was used to identify the epitopes recognized by mAbs 6C11 and 8F12. As a result, two novel B cell epitopes, 38DINGVSWN45 and 134GTNTNIY140, were defined. Amino acid sequence alignment showed that the defined epitopes were conserved in all referenced ASFV strains from various regions of China including the highly pathogenic, epidemic strain, Georgia2007/1 (NC_044959.2), with the same noted substitutions compared to the four foreign ASFV wild-type strains. This study provides important reference values for the design and development of an ASFV vaccine and useful biological materials for the functional study of the CD2v protein by deletion analysis.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Viral Proteins/metabolism , Epitopes, B-Lymphocyte , Antibodies, Monoclonal
6.
Environ Monit Assess ; 191(9): 598, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31463823

ABSTRACT

Understanding the effect of aspect on landform characteristics and erosion rates is an important prerequisite for soil and water conservation in hilly areas. In a cultivated area of the Chinese Loess Plateau, hillslope length, gradient and aspect (east, west, south, and north) were measured on two typical Mao (round loess hill), and net soil loss and location (upper, middle and lower positions) were studied using the 137Cs tracing loss ratio. Hillslope length on different aspects was in the order, north > west > east >south, but gradient changes were inconsistent and more complicated. Southern slopes were shorter and steeper, while on northern slopes, it was the opposite. Erosion rate on hillslopes with different aspects ranged from 1440 to 2631 t/km2 · a, and on northern slopes they were c.24-81% larger than on southern slopes. Upper and middle hillslope positions usually had higher erosion rates than lower positions. The greatest erosion rates were at upper positions on northern slopes, and upper positions on south slopes had relatively lower erosion rates. For hillslope positions influenced by wind erosion in winter and spring, the 137Cs loss ratio could be > 80%, while for the same positions on south slopes without wind erosion, it was < 80%. Our findings demonstrate that aspect is a key driver of landform characteristics and erosion rates on hillslopes, and they could be usefully employed for the prevention and control of soil erosion in this region.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring , Soil , Wind , Cesium Radioisotopes , China , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...