Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 37(10): 3996-4003, 2016 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-29964437

ABSTRACT

Soil-crop system is an important way that heavy metals harm the ecological environment and human health. To research and understand the process of heavy metal absorption, migration and accumulation in soil-crop system is important for the prevention and control of heavy metal pollution and the health of human beings. In this paper, we established a model for crop uptake of heavy metals to calculate the heavy metals contents of wheat roots, stems, leaves and grains, and we analyzed the accumulation process of heavy metals in roots, stems, leaves and grains in the growth cycle of wheat. The predicted values were compared with the measured values to test the accuracy of the model. The results demonstrated that different parts of wheat had different heavy metal absorption capacity, the absorption of the roots was the strongest, followed by leaves, and the absorption capacity of stems and grains was weak. In addition, the contents of different heavy metals in each part of wheat were also significantly different. The content of Cu was the highest, followed by Ni, while the contents of Pb and Cd were small. In the process of wheat growth, the heavy metal accumulation rate of stem, leaf and grain began to slow down at 90, 60 and 100 days respectively, and the concentration of heavy metals reached the maximum gradually, while the accumulation rate of heavy metals in roots showed a growing trend. We studied the process of absorption, migration and accumulation of heavy metals in soil-crop system by using numerical simulation technology, which can provide scientific basis for preventing the ecological and health risks of heavy metal pollution.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Triticum/chemistry , Edible Grain/chemistry , Soil
2.
Huan Jing Ke Xue ; 36(12): 4600-8, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-27011999

ABSTRACT

China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Forests , Rivers , Soil , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...