Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542881

ABSTRACT

RNAs play crucial roles in various essential biological functions, including catalysis and gene regulation. Despite the widespread use of coarse-grained (CG) models/simulations to study RNA 3D structures and dynamics, their direct application is challenging due to the lack of atomic detail. Therefore, the reconstruction of full atomic structures is desirable. In this study, we introduced a straightforward method called ABC2A for reconstructing all-atom structures from RNA CG models. ABC2A utilizes diverse nucleotide fragments from known structures to assemble full atomic structures based on the CG atoms. The diversification of assembly fragments beyond standard A-form ones, commonly used in other programs, combined with a highly simplified structure refinement process, ensures that ABC2A achieves both high accuracy and rapid speed. Tests on a recent large dataset of 361 RNA experimental structures (30-692 nt) indicate that ABC2A can reconstruct full atomic structures from three-bead CG models with a mean RMSD of ~0.34 Å from experimental structures and an average runtime of ~0.5 s (maximum runtime < 2.5 s). Compared to the state-of-the-art Arena, ABC2A achieves a ~25% improvement in accuracy and is five times faster in speed.


Subject(s)
Molecular Dynamics Simulation , RNA , RNA/chemistry , Nucleotides
2.
Molecules ; 28(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37375388

ABSTRACT

DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , DNA/chemistry , RNA/chemistry , Protein Folding
3.
Biophys J ; 122(8): 1503-1516, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36924021

ABSTRACT

RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , RNA/chemistry , Nucleic Acid Conformation , SARS-CoV-2/genetics , Sodium Chloride , Zika Virus/genetics , Zika Virus/metabolism
4.
PLoS Comput Biol ; 18(10): e1010501, 2022 10.
Article in English | MEDLINE | ID: mdl-36260618

ABSTRACT

The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs.


Subject(s)
DNA , RNA , Nucleic Acid Conformation , RNA/chemistry , DNA, Single-Stranded , Ions
5.
Biophys J ; 121(1): 142-156, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34798137

ABSTRACT

Knowledge-based statistical potentials have been shown to be rather effective in protein 3-dimensional (3D) structure evaluation and prediction. Recently, several statistical potentials have been developed for RNA 3D structure evaluation, while their performances are either still at a low level for the test datasets from structure prediction models or dependent on the "black-box" process through neural networks. In this work, we have developed an all-atom distance-dependent statistical potential based on residue separation for RNA 3D structure evaluation, namely rsRNASP, which is composed of short- and long-ranged potentials distinguished by residue separation. The extensive examinations against available RNA test datasets show that rsRNASP has apparently higher performance than the existing statistical potentials for the realistic test datasets with large RNAs from structure prediction models, including the newly released RNA-Puzzles dataset, and is comparable to the existing top statistical potentials for the test datasets with small RNAs or near-native decoys. In addition, rsRNASP is superior to RNA3DCNN, a recently developed scoring function through 3D convolutional neural networks. rsRNASP and the relevant databases are available to the public.


Subject(s)
Proteins , RNA , Proteins/chemistry , RNA/chemistry , RNA/genetics
6.
Front Genet ; 12: 746181, 2021.
Article in English | MEDLINE | ID: mdl-34721533

ABSTRACT

Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.

7.
Front Mol Biosci ; 8: 666369, 2021.
Article in English | MEDLINE | ID: mdl-33928126

ABSTRACT

Macromolecules, such as RNAs, reside in crowded cell environments, which could strongly affect the folded structures and stability of RNAs. The emergence of RNA-driven phase separation in biology further stresses the potential functional roles of molecular crowding. In this work, we employed the coarse-grained model that was previously developed by us to predict 3D structures and stability of the mouse mammary tumor virus (MMTV) pseudoknot under different spatial confinements over a wide range of salt concentrations. The results show that spatial confinements can not only enhance the compactness and stability of MMTV pseudoknot structures but also weaken the dependence of the RNA structure compactness and stability on salt concentration. Based on our microscopic analyses, we found that the effect of spatial confinement on the salt-dependent RNA pseudoknot stability mainly comes through the spatial suppression of extended conformations, which are prevalent in the partially/fully unfolded states, especially at low ion concentrations. Furthermore, our comprehensive analyses revealed that the thermally unfolding pathway of the pseudoknot can be significantly modulated by spatial confinements, since the intermediate states with more extended conformations would loss favor when spatial confinements are introduced.

8.
Front Bioinform ; 1: 809082, 2021.
Article in English | MEDLINE | ID: mdl-36303785

ABSTRACT

The 3D architectures of RNAs are essential for understanding their cellular functions. While an accurate scoring function based on the statistics of known RNA structures is a key component for successful RNA structure prediction or evaluation, there are few tools or web servers that can be directly used to make comprehensive statistical analysis for RNA 3D structures. In this work, we developed RNAStat, an integrated tool for making statistics on RNA 3D structures. For given RNA structures, RNAStat automatically calculates RNA structural properties such as size and shape, and shows their distributions. Based on the RNA structure annotation from DSSR, RNAStat provides statistical information of RNA secondary structure motifs including canonical/non-canonical base pairs, stems, and various loops. In particular, the geometry of base-pairing/stacking can be calculated in RNAStat by constructing a local coordinate system for each base. In addition, RNAStat also supplies the distribution of distance between any atoms to the users to help build distance-based RNA statistical potentials. To test the usability of the tool, we established a non-redundant RNA 3D structure dataset, and based on the dataset, we made a comprehensive statistical analysis on RNA structures, which could have the guiding significance for RNA structure modeling. The python code of RNAStat, the dataset used in this work, and corresponding statistical data files are freely available at GitHub (https://github.com/RNA-folding-lab/RNAStat).

9.
J Chem Phys ; 151(16): 165101, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675878

ABSTRACT

As an extremely common structural motif, RNA hairpins with bulge loops [e.g., the human immunodeficiency virus type 1 (HIV-1) transactivation response (TAR) RNA] can play essential roles in normal cellular processes by binding to proteins and small ligands, which could be very dependent on their three-dimensional (3D) structures and stability. Although the structures and conformational dynamics of the HIV-1 TAR RNA have been extensively studied, there are few investigations on the thermodynamic stability of the TAR RNA, especially in ion solutions, and the existing studies also have some divergence on the unfolding process of the RNA. Here, we employed our previously developed coarse-grained model with implicit salt to predict the 3D structure, stability, and unfolding pathway for the HIV-1 TAR RNA over a wide range of ion concentrations. As compared with the extensive experimental/theoretical results, the present model can give reliable predictions on the 3D structure stability of the TAR RNA from the sequence. Based on the predictions, our further comprehensive analyses on the stability of the TAR RNA as well as its variants revealed that the unfolding pathway of an RNA hairpin with a bulge loop is mainly determined by the relative stability between different states (folded state, intermediate state, and unfolded state) and the strength of the coaxial stacking between two stems in folded structures, both of which can be apparently modulated by the ion concentrations as well as the sequences.


Subject(s)
HIV-1/chemistry , Nucleic Acid Conformation , RNA, Viral/chemistry , Ions/chemistry , Models, Molecular , Solutions
10.
RNA ; 25(11): 1532-1548, 2019 11.
Article in English | MEDLINE | ID: mdl-31391217

ABSTRACT

RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.


Subject(s)
Nucleic Acid Conformation , RNA/chemistry , Salts/chemistry , Cations, Divalent , Cations, Monovalent , Solutions
11.
RNA ; 25(7): 793-812, 2019 07.
Article in English | MEDLINE | ID: mdl-30996105

ABSTRACT

Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.


Subject(s)
Computational Biology/methods , DNA/metabolism , Nucleic Acid Conformation , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Knowledge Bases , Models, Molecular , Reference Values
12.
Biophys J ; 115(8): 1403-1416, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30236782

ABSTRACT

Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.


Subject(s)
Magnesium/chemistry , RNA, Double-Stranded/chemistry , Salts/chemistry , Models, Molecular , Nucleic Acid Conformation , RNA Stability , Thermodynamics
13.
PLoS Comput Biol ; 14(6): e1006222, 2018 06.
Article in English | MEDLINE | ID: mdl-29879103

ABSTRACT

RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.


Subject(s)
Molecular Dynamics Simulation , RNA Folding/physiology , RNA/chemistry , RNA/metabolism , Magnesium/chemistry , Nucleic Acid Conformation , Sodium/chemistry
14.
Biophys J ; 112(6): 1094-1104, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28355538

ABSTRACT

The flexibility of double-stranded (ds) RNA and dsDNA is crucial for their biological functions. Recent experiments have shown that the flexibility of dsRNA and dsDNA can be distinctively different in the aspects of stretching and twist-stretch coupling. Although various studies have been performed to understand the flexibility of dsRNA and dsDNA, there is still a lack of deep understanding of the distinctive differences in the flexibility of dsRNA and dsDNA helices as pertains to their stretching and twist-stretch coupling. In this work, we have explored the relative flexibility in stretching and twist-stretch coupling between dsRNA and dsDNA by all-atom molecular dynamics simulations. The calculated stretch modulus and twist-stretch coupling are in good accordance with the existing experiments. Our analyses show that the differences in stretching and twist-stretch coupling between dsRNA and dsDNA helices are mainly attributed to their different (A- and B-form) helical structures. Stronger basepair inclination and slide in dsRNA is responsible for the apparently weaker stretching rigidity versus that of dsDNA, and the opposite twist-stretch coupling for dsRNA and dsDNA is also attributed to the stronger basepair inclination in dsRNA than in dsDNA. Our calculated macroscopic elastic parameters and microscopic analyses are tested and validated by different force fields for both dsRNA and dsDNA.


Subject(s)
DNA/chemistry , Mechanical Phenomena , RNA, Double-Stranded/chemistry , Base Pairing , Base Sequence , Biomechanical Phenomena , DNA/genetics , DNA/metabolism , Molecular Dynamics Simulation , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism
16.
Sci Rep ; 6: 23434, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26997415

ABSTRACT

Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

17.
Biophys J ; 109(12): 2654-2665, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682822

ABSTRACT

A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.


Subject(s)
Cations, Divalent/chemistry , Cations, Divalent/pharmacology , Inverted Repeat Sequences , Models, Molecular , Nucleic Acid Conformation/drug effects , RNA Stability/drug effects , RNA/chemistry , Base Sequence , Inverted Repeat Sequences/drug effects , RNA/genetics , RNA Folding/drug effects , Sodium Chloride/chemistry , Sodium Chloride/pharmacology , Solutions , Static Electricity
18.
Adv Exp Med Biol ; 827: 143-83, 2015.
Article in English | MEDLINE | ID: mdl-25387965

ABSTRACT

Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.


Subject(s)
Nucleic Acid Conformation , RNA/chemistry , Static Electricity , Kinetics , Thermodynamics
19.
J Chem Phys ; 141(10): 105102, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25217954

ABSTRACT

To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.


Subject(s)
RNA/chemistry , Salts/chemistry , Models, Molecular , Monte Carlo Method , Nucleic Acid Conformation , RNA Stability , Thermodynamics
20.
Biomed Mater ; 8(4): 045003, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23715169

ABSTRACT

The use of the traditional xenograft subcutaneous tumor model has been contested because of its limitations, such as a slow tumorigenesis, inconsistent chemotherapeutic results, etc. In light of these challenges, we aim to revamp the traditional model by employing an electrospun scaffold composed of polydioxanone, gelatin and elastin to boost the tumorigenesis. The scaffold featured a highly porous microstructure and successfully supported the growth of tumor cells in vitro without provoking apoptosis. In vivo studies showed that in the scaffold model the tumor volume increased by 43.27% and the weight by 75.58%, respectively, within a 12-week period. In addition, the scaffold model saw an increase of CD24(+) and CD44(+) cells in the tumor mass by 42% and 313%, respectively. The scaffolding materials did not lead to phenotypic changes during the tumorigenesis. Thereafter, in the scaffold model, we found that the chemotherapeutic regimen of docetaxel, cisplatin and fluorouracil unleashed a stronger capability than the regimen comprising cisplatin and fluorouracil to deplete the CD44(+) subpopulation. This discovery sheds mechanistic lights on the role of docetaxel for its future chemotherapeutic applications. This revamped model affords cancer scientists a convenient and reliable platform to mechanistically investigate the chemotherapeutic drugs on gastric cancer stem cells.


Subject(s)
Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Stomach Neoplasms/drug therapy , Tissue Engineering/methods , Animals , Apoptosis , CD24 Antigen/metabolism , Cell Survival , Cisplatin/chemistry , Elastin/chemistry , Female , Fluorouracil/chemistry , Gelatin/chemistry , Humans , Hyaluronan Receptors/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/drug effects , Phenotype , Polydioxanone/chemistry , Porosity , Stomach Neoplasms/pathology , Time Factors , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL