Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512769

ABSTRACT

Aiming at the shortcomings of the traditional engineering experience in designing thin-film heat flow meters, such as low precision and long iteration time, the finite element analysis model of thin-film heat flow meters is established based on finite element simulation methods, and a double-type thin-film heat flow sensor based on a copper/concentrate thermopile is made. The influence of the position of the thermal resistance layer, heat flux density and thickness of the thermal resistance layer on the temperature gradient of the hot and cold ends of the heat flow sensor were comprehensively analyzed by using a simulation method. When the applied heat flux density is 50 kW/m2 and the thermal resistance layer is located above and below the thermopile, respectively, the temperature difference between the hot junction and the cold junction is basically the same, but comparing the two, the thermal resistance layer located above is more suitable for rapid measurements of heat flux at high temperatures. In addition, the temperature difference between the hot and cold contacts of the thin-film heat flux sensor increases linearly with the thickness of the thermal resistance layer. Finally, we experimentally tested the response-recovery characteristics of the sensors, with a noise of 2.1 µV and a maximum voltage output of 15 µV in a room temperature environment, respectively, with a response time of about 2 s and a recovery time of about 3 s. Therefore, the device we designed has the characteristic of double-sided use, which can greatly expand the scope of use and service life of the device and promote the development of a new type of heat flow meter, which will provide a new method for the measurement of heat flow density in the complex environment on the surface of the aero-engine.

2.
J Phys Chem Lett ; 10(21): 6590-6597, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31596093

ABSTRACT

All-inorganic CsPbX3 (X = Cl, Br or I) perovskite nanocrystals have attracted extensive interest recently due to their exceptional optoelectronic properties. In an effort to improve the charge separation and transfer following efficient exciton generation in such nanocrystals, novel functional nanocomposites were synthesized by the in situ growth of CsPbBr3 perovskite nanocrystals on two-dimensional MXene nanosheets. Efficient excited state charge transfer occurs between CsPbBr3 NCs and MXene nanosheets, as indicated by significant photoluminescence (PL) quenching and much shorter PL decay lifetimes compared with pure CsPbBr3 NCs. The as-obtained CsPbBr3/MXene nanocomposites demonstrated increased photocurrent generation in response to visible light and X-ray illumination, attesting to the potential application of these heterostructure nanocomposites for photoelectric detection. The efficient charge transfer also renders the CsPbBr3/MXene nanocomposite an active photocatalyst for the reduction of CO2 to CO and CH4. This work provides a guide for exploration of perovskite materials in next-generation optoelectronics, such as photoelectric detectors or photocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...