Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Imaging ; 112: 110209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833916

ABSTRACT

PURPOSE: This meta-analysis aimed to compare the diagnostic effectiveness of [18F]FDG PET/CT with that of [18F]FDG PET/MRI in terms of identifying liver metastasis in patients with primary cancer. METHODS: PubMed, Embase, Web of Science, and the Cochrane Library were searched, and studies evaluating the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in patients with liver metastasis of primary cancer were included. We used a random effects model to analyze their sensitivity and specificity. Subgroup analyses and corresponding meta-regressions focusing on race, image analysis, study design, and analysis methodologies were conducted. Cochrane Q and I2 statistics were used to assess intra-group and inter-group heterogeneity. RESULTS: Seven articles with 343 patients were included in this meta-analysis. The sensitivity of [18F]FDG PET/CT was 0.82 (95 % CI: 0.63-0.96), and that of [18F]FDG PET/MRI was 0.91 (95 % CI: 0.82-0.98); there was no significant difference between the two methods (P = 0.32). Similarly, both methods showed equal specificity: 1.00 (95 % CI: 0.95-1.00) for [18F]FDG PET/CT and 1.00 (95 % CI: 0.96-1.00) for [18F]FDG PET/MRI, and thus, there was no significant difference between the methods (P = 0.41). Furthermore, the subgroup analyses revealed no differences. Meta-regression analysis revealed that race was a potential source of heterogeneity for [18F]FDG PET/CT (P = 0.01), while image analysis and contrast agent were found to be potential sources of heterogeneity for [18F]FDG PET/MRI (P = 0.02). CONCLUSIONS: [18F]FDG PET/MRI has similar sensitivity and specificity to [18F]FDG PET/CT for detecting liver metastasis of primary cancer in both the general population and in subgroups. [18F]FDG PET/CT may be a more cost-effective option. However, the conclusions of this meta-analysis are tentative due to the limited number of studies included, and further research is necessary for validation.


Subject(s)
Fluorodeoxyglucose F18 , Liver Neoplasms , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Sensitivity and Specificity , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods
2.
Food Chem X ; 22: 101339, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38721385

ABSTRACT

This study investigated the savory intensity of aroma-active compounds derived from yeast extract Maillard reaction models. Sensory evaluation results revealed that beef flavoring model (28.00 g) exhibited the highest savory perception intensity when the yeast extract FA34 (0.50 g) the added. Eleven aroma-active compounds associated with saltiness perception were identified via solid-phase microextraction and extraction combined with gas chromatography-mass spectrometry/olfactory. The odorant-NaCl mixture model and saltiness intensity evaluation results revealed that thiazole and 4-methylpentanoic acid could significantly (p < 0.05) enhance the saltiness perception of salt solution (5.00 g/L), 2-methylpyrazine, 2-methyl-3-furanthiol, 2,6-dimethylpyrazine, furfuryl mercaptan, and methyl 2-methyl-3-furyl disulfide could significantly (p < 0.01) enhance the saltiness perception of a salt solution (5.00 g/L). Electroencephalography revealed that the main mechanisms underlying aroma-induced saltiness perception enhancement included the strengthening of the saltiness perception signal and prolonging signal stimulation time in the frontal regions of the cerebral cortex.

3.
Foods ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672938

ABSTRACT

An online survey was conducted to show that most respondents preferred sports drinks with sweet and fruity characteristics. Eleven sports drinks with higher consumers' preferences were further selected for aroma and taste evaluation. Temporal dominance of sensations analysis showed that fruity and fresh attributes were dominant, while sour and fruity sweet were dominant tastes during consumption. ß-Damascenone, ß-ionone, and linalool contributing to floral perception, γ-decalactone, ethyl cinnamate, and isoamyl acetate contributing to fruity perception, and menthol contributing to fresh perception were confirmed by odor activity value analysis. Running affected the nasal air flow and the saliva secretion, resulting in the flavor perception changing from fruity sweet, sweet, and fruity to sour because the recognition threshold decreased for sweet, fruity, floral, and fresh flavors and increased for saltiness, astringency, and sour tastes.

4.
Food Res Int ; 181: 114078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448095

ABSTRACT

The effects of α-amylase on of flavor perception were investigated via spectrum analysis, electronic tongue, on-line mass spectrometry, and molecular docking. Aroma release results showed that α-amylase exhibited variable release patterns of different aroma compounds. Electronic tongue analysis showed that the perception of bitterness, sweetness, sour, and saltiness was subtly increased and that of umami was significantly increased (p < 0.01) along with the increasing enzyme activity of α-amylase. Ultraviolet absorption and fluorescence spectroscopy analyses showed that static quenching occurred between α-amylase and eight flavor compounds and their interaction effects were spontaneous. One binding pocket was confirmed between the α-amylase and flavor compounds, and molecular docking simulation results showed that the hydrogen, electrostatic, and hydrophobic bonds were the main force interactions. The TYP82, TRP83, LEU173, HIS80, HIS122, ASP297, ASP206, and ARG344 were the key α-amylase amino acid residues that interacted with the eight flavor compounds.


Subject(s)
Protons , alpha-Amylases , Molecular Docking Simulation , Electronic Nose , Mass Spectrometry , Amino Acids , Perception
5.
Foods ; 12(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835346

ABSTRACT

Screening the suitability of soy sauce for specific cooking methods from various products is beneficial for the fine development of the soy sauce industry. Multiple sensory evaluation and gas chromatography-mass spectrometry/olfactometry (GC-MS/O) analysis were combined to decode the suitability of soy sauces for cold dishes and characterize their differential aroma-active compounds. Thirty-two kinds of soy sauce with 42 sensory descriptors were determined via a check-all-that-apply analysis, and werefurther classified into six categories via a cluster analysis. The sensory evaluation results showed that seven soy sauce samples had the highest acceptance in each category. Solid-phase microextraction and solid phase extraction results combined with the GC-MS/O analysis results showed that a total of 38 aroma-active compounds were identified in seven soy sauce samples, among which 2-methoxy-phenol (6-93), ethyl acetate (2-48), 3-methyl-1-butanol (4-30), 3-methyl-butanal (5-24), methional (0-22), dimethyl trisulfide (5-19) and dimethyl disulfide (0-8) showed a higher relative odor activity value (ROAV). A partial least squares regression prediction combined with additional tests further confirmed that 2,5-dimethyl-pyrazine; 2,6-dimethyl-pyrazine; and 2-ethyl-6-methyl-pyrazine significantly contributed to the roasted attributes, methional significantly contributed to the sauce-like notes, ethanol significantly contributed to the alcoholic notes and 2-methoxy-phenol significantly contributed to the smoky notes. 2,5-Dimethyl-pyrazine; methional; 2,6-dimethyl-pyrazine and 2-ethyl-6-methyl-pyrazine significantly contributed to the caramel-like attributes.

6.
Foods ; 12(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37628135

ABSTRACT

The unique odors of yeast proteins (YPs) are decisive for their application in meat substitutes. Sensory evaluation, electronic nose, and gas chromatography-mass spectrometry/olfactory (GC-MS/O) were combined to characterize the aroma profiles and aroma-active compounds of YPs. The sensory evaluation results indicate that the sweaty aroma had the strongest intensity in YP #10, followed by rice bran, sour, and plastic. The electronic nose could effectively distinguish the aroma differences among five YPs. A total of 27 aroma-active compounds in the five YPs were identified by GC-MS/O. The concentration of 2-methyl-propanoic acid (6.37 µg/kg), butanoic acid (47.46 µg/kg), 3-methyl-butanoic acid (22.50 µg/kg), and indole (943.40 µg/kg) in YP #10's aroma was higher than that of the other YPs. The partial least squares regression method results show that o-cresol, (3S)-3,7-dimethyloct-7-en-1-ol, benzyl alcohol, octanal, 2-methyl-propanoic acid, butanoic acid, 3-methyl-butanoic acid, hexanal, heptanal, and indole were predicted as the potential aroma-active compounds significantly contributing to the aroma profiles of the five YPs. Addition experiments confirmed that the overall aroma profile intensities of the five YP samples were extended with the addition of these ten compounds, verifying their significant contributions.

7.
Foods ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360025

ABSTRACT

Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...