Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 464: 133027, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37995638

ABSTRACT

Film covers have been widely applied worldwide. However, the effects of long-term plastic film mulching use on heavy metal (HM) activity in soil remain unclear. This study focused on farmland in the upstream part of the Pearl River in China and collected 103 soil samples after 2, 5, and 15 years of plastic film mulching. The main environmental factors controlling microplastics (MPs), plasticizer phthalic acid esters (PAEs), HM pollution characteristics, and HM activity were analyzed. The results showed that Polyethylene (PE) and di(2-ethylhexyl) dicyclohexyl phthalate (DCHP) were the main MPs and PAEs, respectively. The abundance of MPs and the concentrations of free HM ions (Cd, Cu, and Ni) in the soil solution increased with increasing plastic film mulching duration. The Partial Least Squares Path Model (PLS-PM) indicated that after plastic film mulching, soil chemical properties (pH/amorphous Fe) and biological properties (Dissolved organic carbon/ Easily oxidizable carbon/Microbial biomass carbon) were the main controlling factors for free and complexed HM ions (Cd, Pb, Cu, and Ni). These results suggest that, after plastic film mulching, MPs indirectly regulate HM activity by altering soil properties. This study provides a new perspective for the management of MPs and HM activities in agricultural ecosystems.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Microplastics , Plastics/chemistry , Ecosystem , Cadmium , Least-Squares Analysis , Soil Pollutants/analysis , Agriculture/methods , China , Ions , Carbon
2.
J Hazard Mater ; 445: 130638, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37056010

ABSTRACT

Microplastics (MPs) that enter the soil can alter the physicochemical and biochemical properties of soil and affect speciation of heavy metals (HMs), thereby perturbing the bioavailability of HMs. However, the mechanisms underlying these effects are not understood. Therefore, we investigated the effects of MPs from poly (butyleneadipate-co-terephthalate)-based biodegradable mulch (BM) and polyethylene mulch (PM) in Cd- or As-contaminated soil on soil properties and speciation of HMs. MPs were characterised using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The addition of MPs reduced the bioavailability of HMs in soil and promoted the transformation of HMs into inert fractions. The mechanisms underlying the reduction of the bioavailability of HMs in soils could be as follows: (1) the entry of MPs into the soil changed its properties, which reduced the bioavailability of HMs; (2) FTIR and XPS analyses revealed that the hydroxyl and carboxyl groups and benzene ring present on the surface of aged MPs stabilized complexes (As(V)-O) with As(V) may have directly reduced the bioavailability of As(V) in soil; (3) aged BM exposed more amounts and types of reactive functional groups and was more effective in stabilising soil HMs than PM. Overall, this study provides new insights regarding the complexation mechanisms of soil HMs by MPs from different plastic mulch sources.


Subject(s)
Polyethylene , Soil Pollutants , Microplastics , Plastics , Cadmium , Biological Availability , Soil
3.
Sci Total Environ ; 868: 161557, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36640877

ABSTRACT

Arsenic (As) and microplastic (MP) co-exposure is a major environmental problem in terrestrial ecosystems. Polyethylene and biodegradable plastics decompose into MP particles under microbial-mediated and weathering conditions. However, the effects of MP particles on physiological responses and As accumulation in maize have not been thoroughly explored. In this study, the effects of polyethylene microplastic particles (PEMPs) and biodegradable microplastic particles (BPMPs) on As accumulation, growth and physio-biochemical performance of maize seedlings (Zea mays L.) in As-contaminated soil were investigated. Our study showed that 10 % PE reduced As content in maize seedlings leaves (roots) by 41.19(34.53) µg kg-1, compared to the control. The 10 % BP reduced As content in maize seedlings leaves (roots) by 64.24 (57.27) µg kg-1. 10 % PE (10 % BP) reduced maize seedlings leaf area, total chlorophyll content and photosynthetic rate by 5.05 % (21.68 %), 44.98 % (57.12 %) and 65.29 % (77.89 %) and increased H2O2 content by 38.04 % (179.6 %), respectively. The antioxidant defense system of maize seedlings leaves was damaged by PEMPs and As co-exposure. Maize seedlings has adapted to stress by regulating antioxidant enzyme activity and the AsA-GSH cycle under BPMPs and As co-exposure. This study provides new insights into the effects of PEMPs and BPMPs on phytotoxicity and As accumulation in As-contaminated soils. Preliminarily data suggests that BPMPs may exhibit greater toxic effects on maize seedlings than PEMPs, which warrants further exploration.


Subject(s)
Antioxidants , Arsenic , Antioxidants/metabolism , Plastics/analysis , Zea mays , Microplastics/analysis , Seedlings , Arsenic/analysis , Polyethylene/analysis , Hydrogen Peroxide/pharmacology , Ecosystem , Photosynthesis , Soil
4.
Nat Cell Biol ; 22(2): 143-150, 2020 02.
Article in English | MEDLINE | ID: mdl-32015437

ABSTRACT

Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Engineering/methods , Metagenome , Transcriptome , Animals , Animals, Genetically Modified , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Genetic Therapy/methods , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
5.
PLoS One ; 12(8): e0181996, 2017.
Article in English | MEDLINE | ID: mdl-28792966

ABSTRACT

Triclocarban (TCC) is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS). 14C-TCC (100 nM) was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.


Subject(s)
Carbanilides/toxicity , Gene Expression Regulation/genetics , Lipid Metabolism/drug effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/pathology , Water Pollutants, Chemical/toxicity , Animals , Female , Gene Expression , Liver/metabolism , Male , Mice , Pregnancy , Real-Time Polymerase Chain Reaction , Wastewater/chemistry , Wastewater/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...