Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1132192, 2023.
Article in English | MEDLINE | ID: mdl-36937750

ABSTRACT

Osteosarcoma remains a worldwide concern due to the poor effectiveness of available therapies in the clinic. Therefore, it is necessary to find a safe and effective therapy to realize the complete resection of osteosarcoma and reconstruction of the bone defect. Magnetic hyperthermia based on magnetic nanoparticles can kill tumor cells by raising the temperature without causing the side effects of conventional cancer treatments. This research aims to design a high-performance magnetic hydrogel composed of gelatin methacrylate and highly magnetic cobalt ferrite (CFO) nanoparticles for osteosarcoma treatment. Specifically, CFO is surface functionalized with methacrylate groups (MeCFO). The surface modified CFO has good biocompatibility and stable solution dispersion ability. Afterward, MeCFO nanoparticles are incorporated into GelMA to fabricate a three-dimensional (3D) printable MeCFO/GelMA magnetic hydrogel and then photocross-linked by UV radiation. MeCFO/GelMA hydrogel has high porosity and swelling ability, indicating that the hydrogel possesses more space and good hydrophily for cell survival. The rheological results showed that the hydrogel has shear thinning property, which is suitable as a bioprinting ink to produce desired structures by a 3D printer. Furthermore, 50 µg/mL MeCFO not only decreases the cell activity of osteosarcoma cells but also promotes the osteogenic differentiation of mBMSCs. The results of the CCK-8 assay and live/dead staining showed that MeCFO/GelMA hydrogel had good cytocompatibility. These results indicated that MeCFO/GelMA hydrogel with potential antitumor and bone reconstruction functions is a promising therapeutic strategy after osteosarcoma resection.

2.
Biomed Mater ; 17(3)2022 05 03.
Article in English | MEDLINE | ID: mdl-35395653

ABSTRACT

Recently, biofunctional ions (Mg2+, Si4+, etc) and graphene derivatives are proved to be promising in stimulating bone formation. In this study, a novel inorganic/organic composite porous scaffold based on silk fibroin (SF), graphene oxide (GO), and calcium magnesium silicate (CMS) was developed for bone repair. The porous scaffolds obtained by lyophilization showed a little difference in pore structure while GO and CMS displayed a good interaction with SF matrix. The addition of CMS with good mineralization potential and sustainedly release ability of biofunctional ions (Ca2+, Mg2+and Si4+) increased the strength of SF scaffolds a little and facilitated the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by upregulating bone formation-related genes (ALP, COL1, OC and Runx2). The further incorporation of GO in SF scaffolds enhanced the compressive strength and water retention, and also remarkably promoted the osteogenic differentiation of BMSCs. Besides, the angiogenesis of human umbilical vein endothelial cells was significantly promoted by CMS/GO/SF scaffold extract through the upregulation of angiogenesis genes (eNOs and bFGF). Moreover, the osteoclastic formation ability of RAW264.7 cells was suppressed by the released ions from CMS/GO/SF scaffold through the down-regulation of CAK, MMP9 and TRAP. The promoted osteogenesis, angiogenesis and inhibited osteoclastogenesis functions of CMS/GO/SF composite scaffold may enable it as a novel therapy for bone repair and regeneration.


Subject(s)
Fibroins , Graphite , Bone Regeneration , Calcium , Endothelial Cells , Fibroins/chemistry , Graphite/chemistry , Humans , Magnesium , Magnesium Silicates , Osteogenesis , Porosity , Tissue Engineering , Tissue Scaffolds/chemistry
3.
J Cell Physiol ; 234(11): 19167-19179, 2019 11.
Article in English | MEDLINE | ID: mdl-30941765

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are herpesviruses associated with human malignancies. As exosomes can shuttle many herpesvirus-associated biomolecules from host cells to recipient cells, the exosomal pathway is utilized by herpesviruses to achieve extensive infections and even oncogenesis. In this review, we discuss the oncogenic biomolecules present in exosomes derived from KSHV- and EBV-infected cells. Moreover, oncogenesis via exosomal biomolecules mainly occurs through three processes, including regulation of downstream signals, promotion of immune dysfunction and transformation of cells. Also, the exosomes may provide diagnostic markers and therapeutic targets specific for KSHV- and EBV-associated malignancies.


Subject(s)
Exosomes/virology , Herpesvirus 4, Human/pathogenicity , Herpesvirus 8, Human/pathogenicity , Neoplasms/virology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Exosomes/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 8, Human/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...