Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790747

ABSTRACT

This study aimed to investigate the effect of Gnaphalium affine extract (GAE) (0.04, 0.2 and 1 mg/g protein) on the gel properties of porcine myofibrillar proteins (MPs) in a simulated Fenton oxidation system, using tea polyphenols (TPs) at similar concentrations of 0.04, 0.2, and 1 mg/g protein, respectively, as a contrast. The findings revealed that as the TP concentration increased, the water retention of MP gels decreased significantly (p < 0.05). In contrast, MP gels containing medium and high concentrations of GAE exhibited significantly higher water retention than those with low concentrations of GAE (p < 0.05). When the concentration of GAE was increased to 1 mg/g protein, the strength of MP gels was significantly reduced (p < 0.05) by 33.32% compared with the oxidized control group, suggesting that low and medium GAE concentrations support MP gel formation. A texture profile analysis indicated that an appropriate GAE concentration improved gel structure and texture. Dynamic rheological characterization revealed that low concentrations of TP (0.04 mg/g protein) and low and medium concentrations of GAE (0.04 and 0.2 mg/g protein) strengthened the protein gel system. Conversely, high concentrations of TP and GAE (1.0 mg/g protein) damaged the protein gel system or even promoted the collapse of the gel system. Scanning electron microscopy revealed that higher TP concentrations disrupted the gel, whereas low and medium GAE concentrations maintained a more continuous and complete gel network structure compared with the oxidized control group. This indicates that an appropriate GAE concentration could effectively hinder the destruction of the gel network structure by oxidation. Therefore, based on the obtained results, 0.2 mg/g protein is recommended as the ideal concentration of GAE to be used in actual meat processing to regulate the oxidization and gel properties of meat products.

2.
ACS Biomater Sci Eng ; 10(2): 723-742, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38296812

ABSTRACT

Chemotherapy remains the mainstay of treatment for the lymphoma patient population, despite its relatively poor therapeutic results, high toxicity, and low specificity. With the advancement of biotechnology, the significance of drug-loading biomimetic materials in the medical field has become increasingly evident, attracting extensive attention from the scientific community and the pharmaceutical industry. Given that they can cater to the particular requirements of lymphoma patients, drug-loading biomimetic materials have recently become a potent and promising delivery approach for various applications. This review mainly reviews the recent advancements in the treatment of tumors with biological drug carrier-loaded drugs, outlines the mechanisms of lymphoma development and the diverse treatment modalities currently available, and discusses the merits and limitations of biological drug carriers. What is more, the practical application of biocarriers in tumors is explored by providing examples, and the possibility of loading such organisms with antilymphoma drugs for the treatment of lymphoma is conceived.


Subject(s)
Biological Products , Lymphoma, Non-Hodgkin , Lymphoma , Humans , Biomimetics , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/pathology , Lymphoma/drug therapy , Biological Products/therapeutic use
3.
Front Oncol ; 12: 889034, 2022.
Article in English | MEDLINE | ID: mdl-35677161

ABSTRACT

The galectin family of proteins has high affinity with ß-galactoside-containing glycans. These proteins participate in cell growth and differentiation, cell adhesion, cell signal transduction, cell apoptosis, and other cellular activities. In recent years, a large number of studies have described the expression and correlation of galectins in different tumors. Each member of the family plays a vital role in tumor growth, progression, angiogenesis, adhesion, and tumor immune escape. Studies on the roles of galectins in lymphoma have mainly involved galectin-1, -3, -7, and -9. The results suggest that galectins may become novel targets for precise tumor treatment. This article reviews current research progress regarding galectins in lymphoma and provides new ideas for exploring them as novel targets for treating lymphoma and other important medical issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...