Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Transduct Target Ther ; 9(1): 110, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724491

ABSTRACT

Previous studies have shown that low platelet count combined with high plasma total homocysteine (tHcy) increased stroke risk and can be lowered by 73% with folic acid. However, the combined role of other platelet activation parameters and the methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on stroke risk and folic acid treatment benefit remain to be examined. This study aimed to investigate if platelet activation parameters and MTHFR genotypes jointly impact folic acid treatment efficacy in first stroke prevention. Data were derived from the China Stroke Primary Prevention Trial. This study includes a total of 11,185 adult hypertensive patients with relevant platelet activation parameters and MTHFR genotype data. When simultaneously considering both platelet activation parameters (plateletcrit, platelet count, mean platelet volume, platelet distribution width) and MTHFR genotypes, patients with both low plateletcrit (Q1) and the TT genotype had the highest stroke incidence rate (5.6%) in the enalapril group. This subgroup significantly benefited from folic acid treatment, with a 66% reduction in first stroke (HR: 0.34; 95% CI: 0.14-0.82; p = 0.016). Consistently, the subgroup with low plateletcrit (Q1) and the CC/CT genotype also benefited from folic acid treatment (HR: 0.40; 95% CI: 0.23-0.70; p = 0.001). In Chinese hypertensive adults, low plateletcrit can identify those who may greatly benefit from folic acid treatment, in particular, those with the TT genotype, a subpopulation known to have the highest stroke risk.


Subject(s)
Folic Acid , Genotype , Methylenetetrahydrofolate Reductase (NADPH2) , Stroke , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Folic Acid/administration & dosage , Folic Acid/genetics , Stroke/genetics , Stroke/prevention & control , Male , Female , Middle Aged , Aged , Hypertension/genetics , Platelet Activation/genetics , Platelet Activation/drug effects , China/epidemiology , Blood Platelets/metabolism , Blood Platelets/drug effects , Platelet Count , Adult
2.
Biomed Pharmacother ; 168: 115693, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844356

ABSTRACT

Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.


Subject(s)
Cardiovascular Diseases , Vascular Calcification , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Vascular Calcification/prevention & control , Cardiovascular Diseases/prevention & control , Diet , Oxidative Stress
3.
Signal Transduct Target Ther ; 7(1): 200, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752619

ABSTRACT

Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.


Subject(s)
Cardiovascular Diseases , Epigenesis, Genetic , Cardiovascular Diseases/genetics , Clinical Trials as Topic , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Histone Methyltransferases/genetics , Histones/genetics , Histones/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...