Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Comp Immunol ; 127: 104305, 2022 02.
Article in English | MEDLINE | ID: mdl-34718077

ABSTRACT

Beetles are the most diverse group of insects in Insecta which can be found in almost every habitat and environment on Earth. The possessing of the rapid and effective immune defenses is one of the important factors for their success. It is generally recognized that beetles only rely on the non-specific innate immune defense, without immunological memory, to fight against pathogens. However, there was cumulative evidence for the innate immune memory in invertebrates, including beetles, over the last decades, implying that insect innate immunity is more complex and has more features than previously thought. In beetles, it has been well documented that the specific or nonspecific enhanced immunocompetence can persist throughout development within generations and can even be transferred to the descendents in the next generation. Although insect immune priming might be shaped by epigenetic modifications and transferring effectors, mRNA and microbial signals, the solid experimental evidence to support the causal relationship between any of them and immune priming is still scarce. The combined usage of 'omics' approaches and CRISPR/Cas9 in the appropriate insect models with well-known genetic background, Tribolium castaneum and Tenebrio molitor, will help us to decipher the molecular mechanisms by which immune priming occurs in beetles in depth.


Subject(s)
Coleoptera , Tenebrio , Tribolium , Animals , Immunity, Innate , Immunologic Memory , Tribolium/genetics
2.
Insects ; 12(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208921

ABSTRACT

Red Palm Weevil (RPW), Rhynchophorus ferrugineus Olivier, is a notorious pest, which infests palm trees and has caused great economic losses worldwide. At present, insecticide applications are still the main way to control this pest. However, pesticide resistance has been detected in the field populations of RPW. Thus, future management strategies based on the novel association biological control need be developed. Recent studies have shown that the intestinal tract of RPW is often colonized by multiple microbial species as mammals and model insects, and gut bacteria have been found to promote the growth, development and immune activity of RPW larvae by modulating nutrient metabolism. Furthermore, two peptidoglycan recognition proteins (PGRPs), PGRP-LB and PGRP-S1, can act as the negative regulators to modulate the intestinal immunity to maintain the homeostasis of gut bacteria in RPW larvae. Here, we summarized the current knowledge on the gut bacterial composition of RPW and their impact on the physiological traits of RPW larvae. In contrast with metazoans, it is much easier to make genetic engineered microbes to produce some active molecules against pests. From this perspective, because of the profound effects of gut bacteria on host phenotypes, it is promising to dissect the molecular mechanisms behind their effect on host physiology and facilitate the development of microbial resource-based management methods for pest control.

3.
J Insect Physiol ; 56(11): 1696-701, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20615412

ABSTRACT

Immune defense imposes fitness costs as well as benefits, so organisms should optimize, not maximize, their immune function through their life cycle. We investigated this issue in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), which is a pine-killing invasive beetle in China, though it is usually considered as a secondary pest in its native range of North America. We hypothesized that pathogen pressure may affect these beetles differently throughout their life history. We measured the insect's immunocompetence throughout life, determining encapsulation ability and phenoloxidase activity in larval stages, pupae and adults. Pupae had the highest encapsulation ability, but encapsulation was not different between final instar larvae and adults. Phenoloxidase (PO) activity was highest in final instar larvae and pupae, followed by the second instar larvae and adults. Total phenoloxidase activity increased significantly from the second instar larval stage to pupae, and then decreased in adults. Although the second instar larvae had the lowest phenoloxidase activity, more than 90% of total PO existed in the hemolymph in the form of the active enzyme, as compared with pupae, in which over 60% of PO occurred as a proenzyme. Both active PO and total PO were much higher in females than in males, though no significant differences were detected between the encapsulation ability of male and female adults. This result suggests the existence of a sexual dimorphism of immunocompetence in D. valens adults. Variations in immunocompetence across developmental stages suggest that D. valens adopts diverse investment strategies in immunocompetence during different stages. Potential reasons for variation in immunocompetence among developmental stages and between the sexes of D. valens are discussed.


Subject(s)
Coleoptera/growth & development , Coleoptera/immunology , Animals , China , Female , Genetic Fitness , Larva/immunology , Male , Pupa/immunology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...