Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1370593, 2024.
Article in English | MEDLINE | ID: mdl-38742217

ABSTRACT

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

2.
Materials (Basel) ; 15(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35888425

ABSTRACT

A nanoparticle, under biological milieu, is inclined to be combined with various biomolecules, particularly protein, generating an interfacial corona which provides a new biological identity. Herein, the binding interaction between silver nanoparticles (AgNPs) and human serum albumin (HSA) was studied with transmission electron microscopy (TEM), circular dichroism (CD), and multiple spectroscopic techniques. Due to the ground state complex formed mainly through hydrophobic interactions, the fluorescence titration method proved that intrinsic fluorescence for HSA was probably statically quenched by AgNPs. The complete thermodynamic parameters were derived, indicating that the interaction between HSA and AgNPs is an entropy-driven process. Additionally, synchronous fluorescence and CD spectrum results suggested the conformational variation it has upon binding to AgNPs and the α-helix content has HSA visibly decreased. The kinetic experiments proved the double hysteresis effect has in HSA's binding to the AgNPs surface. Moreover, the binding has between HSA and AgNPs follows the pseudo-second-order kinetic characteristic and fits the Freundlich model for multilayer adsorption. These results facilitate the comprehension about NPs' underlying biological effects under a physiological environment and promote the secure applications of NPs biologically and medically.

3.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 7): o1837, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21837204

ABSTRACT

In the title compound, C(8)H(10)N(2)O(4)·H(2)O, the imidazole N atom is protonated and one of the carboxyl-ate groups is deprotoned, forming a zwitterion. An intra-molecular O-H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter-molecular N-H⋯O and O-H⋯O hydrogen bonds. In addition, inter-molecular N-H⋯O and O-H⋯O hydrogen bonds link the mol-ecules into two-dimensional networks parallel to (10[Formula: see text]).

SELECTION OF CITATIONS
SEARCH DETAIL
...