Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 68, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520013

ABSTRACT

BACKGROUND: The brown planthopper (BPH) is a kind of piercing-sucking insect specific to rice, with the damage tops the list of pathogens and insects in recent years. microRNAs (miRNAs) are pivotal regulators of plant-environment interactions, while the mechanism underlying their function against insects is largely unknown. RESULTS: Here, we confirmed that OsmiR319, an ancient and conserved miRNA, negatively regulated resistance to BPHs, with overexpression of OsmiR319 susceptible to BPH, while suppression of OsmiR319 resistant to BPH in comparison with wild type. Meanwhile, we identified several targets of OsmiR319 that may mediate BPH resistance. Among them, OsPCF5 was the most obviously induced by BPH feeding, and over expression of OsPCF5 was resistance to BPH. In addition, various biochemical assays verified that OsPCF5 interacted with several MYB proteins, such as OsMYB22, OsMYB30, and OsMYB30C.Genetically, we revealed that both OsMYB22 and OsMYB30C positively regulated BPH resistance. Genetic interaction analyses confirmed that OsMYB22 and OsMYB30C both function in the same genetic pathway with OsmiR319b to mediate BPH resistance. CONCLUSIONS: Altogether, we revealed that OsPCF5 regulates BPH resistance via association with several MYB proteins downstream of OsmiR319, these MYB proteins might function as regulators of BPH resistance through regulating the phenylpropane synthesis.


Subject(s)
Hemiptera , MicroRNAs , Oryza , Animals , Oryza/physiology , Hemiptera/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Rice (N Y) ; 16(1): 30, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402009

ABSTRACT

Brown planthopper (BPH) is the most destructive insect pest to rice that causes tremendous yield loss each year in rice planting Asia and South-East Asia areas. Compared with traditional chemical-based treatment, utilization of plant endogenous resistance is a more effective and environmental-friendly way for BPH control. Accordingly, quite a few quantitative trait loci (QTLs) for BPH resistance were cloned using forward genetics. However, BPH is apt to change quickly into new biotypes to overcome plant resistance, therefore, new resistance resources and genes are continuously needed. miRNAs are important regulators in both plant development and physiological regulation including immunity, and might be used as effective supplements for BPH resistance QTLs. miR159 is an ancient and conserved miRNA. In this study, we found that each OsMIR159 gene in rice responded to BPH feeding very obviously, and genetic function assay proved them to negatively regulate BPH resistance, with STTM159 showing resistance to BPH, and over expression of OsmiR159d susceptible to BPH. One target genes of OsmiR159, OsGAMYBL2, positively regulated BPH resistance. Further biochemical studies revealed that OsGAMYBL2 could directly bind to the promoter of G-protein γ subunit encoding GS3 gene and repress its expression. And genetically, GS3 responded to BPH feeding promptly and negatively regulated BPH resistance, GS3 over expression plants were susceptible to BPH, while GS3 knock-out plants were resistant to BPH. Thus, we identified new function of OsmiR159-OsGAMYBL2 in mediating BPH response, and revealed a new OsmiR159-G protein pathway that mediates BPH resistance in rice.

3.
New Phytol ; 239(2): 720-738, 2023 07.
Article in English | MEDLINE | ID: mdl-37149887

ABSTRACT

The brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction. Genetic analyses revealed that MYB22 regulates rice resistance to BPH via its EAR motif. Several biochemical experiments (e.g. transient transcription assay, Y2H, LCA, and BiFC) indicated that MYB22 is a transcriptional repressor that interacts with the corepressor TOPLESS via its EAR motif and recruits HDAC1 to form a tripartite complex. Flavonoid-3'-hydroxylase (F3'H) is a flavonoid biosynthesis pathway-related gene that negatively regulates rice resistance to BPH. Based on a bioinformatics analysis and the results of EMSA and transient transcription assays, MYB22 can bind directly to the F3'H promoter and repress gene expression along with TOPLESS and HDAC1. We revealed a transcriptional regulatory mechanism influencing the rice-BPH interaction that differs from previously reported mechanisms. Specifically, MYB22-TOPLESS-HDAC1 is a novel transcriptional repressor complex with components that synergistically and positively regulate rice resistance to BPH through the transcriptional repression of F3'H.


Subject(s)
Hemiptera , Oryza , Animals , Flavonoids/metabolism , Gene Expression Regulation, Plant , Hemiptera/physiology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Plant Sci ; 325: 111465, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36155239

ABSTRACT

MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.


Subject(s)
MicroRNAs , Oryza , Triticum/genetics , Triticum/metabolism , Poaceae/genetics , Zea mays/genetics , Zea mays/metabolism , Gene Expression Regulation, Plant , Phylogeny , Disease Resistance , Plants, Genetically Modified/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Edible Grain/genetics , Oryza/genetics
5.
Plant Cell Environ ; 45(6): 1914-1929, 2022 06.
Article in English | MEDLINE | ID: mdl-35343596

ABSTRACT

Brown planthopper (BPH) and blast disease jointly or individually cause big yield losses every year. To identify genes and metabolites with potential contributions to the dual resistance against both biotic-stress factors, we carried out a transcriptome and metabolome analysis for susceptible and resistant rice varieties after BPH and rice blast infestations. Coexpression network analysis identified a modular pattern that had the highest correlation coefficients (0.81) after the BPH and rice blast (-0.81) treatments. In total, 134 phenylpropanoid biosynthesis pathway-related genes were detected in this group. We found that the flavanone 3-hydroxylase gene (OsF3H) had opposite expression trends in response to BPH and rice blast infestations whereas the OsF3'H had similar expression patterns. Genetics analysis confirmed that the OsF3H gene knockdown lines demonstrated the opposite resistance phenotypes against BPH and rice blast, whereas the OsF3'H knockout lines enhanced rice resistance against both pests. Consistently, our metabolomics analysis identified the metabolite eriodictyol, one putative essential product of these two genes, that was more highly accumulated in the resistant rice variety of RHT than in the susceptible variety MDJ. This study highlights a useful strategy for identifying more genes and metabolites that have potential synergistic effects on rice against to multiple biotic stresses.


Subject(s)
Hemiptera , Oryza , Animals , Ascomycota , Disease Resistance/genetics , Gene Expression Regulation, Plant , Hemiptera/physiology , Oryza/genetics , Oryza/metabolism
6.
BMC Plant Biol ; 21(1): 485, 2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34688264

ABSTRACT

BACKGROUND: GROWTH-REGULATING FACTORs (GRFs), a type of plant-specific transcription factors, play important roles in regulating plant growth and development. Although GRF gene family has been identified in various plant species, a genome-wide analysis of this family in lettuce (Lactuca sativa L.) has not been reported yet. RESULTS: Here we identified 15 GRF genes in lettuce and performed comprehensive analysis of them, including chromosomal locations, gene structures, and conserved motifs. Through phylogenic analysis, we divided LsaGRFs into six groups. Transactivation assays and subcellular localization of LsaGRF5 showed that this protein is likely to act as a transcriptional factor in the cell nucleus. Furthermore, transgenic lettuce lines overexpressing LsaGRF5 exhibited larger leaves, while smaller leaves were observed in LsaMIR396a overexpression lines, in which LsaGRF5 was down-regulated. CONCLUSIONS: These results in lettuce provide insight into the molecular mechanism of GRF gene family in regulating leaf growth and development and foundational information for genetic improvement of the lettuce variations specialized in leaf character.


Subject(s)
Lactuca/growth & development , Lactuca/genetics , Plant Development/genetics , Plant Growth Regulators/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/genetics , China , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Phylogeny , Transcription Factors
7.
Plant Physiol ; 186(1): 519-533, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33620493

ABSTRACT

microRNAs (miRNAs) are promising targets for crop improvement of complex agricultural traits. Coordinated activity between/among different miRNAs may fine-tune specific developmental processes in diverse organisms. Grain size is a main factor determining rice (Oryza sativa L.) crop yield, but the network of miRNAs influencing this trait remains uncharacterized. Here we show that sequestering OsmiR396 through target mimicry (MIM396) can substantially increase grain size in several japonica and indica rice subspecies and in plants with excessive tillers and a high panicle density. Thus, OsmiR396 has a major role related to the regulation of rice grain size. The grain shape of Growth Regulating Factor8 (OsGRF8)-overexpressing transgenic plants was most similar to that of MIM396 plants, suggesting OsGRF8 is a major mediator of OsmiR396 in grain size regulation. A miRNA microarray analysis revealed changes to the expression of many miRNAs, including OsmiR408, in the MIM396 plants. Analyses of gene expression patterns and functions indicated OsmiR408 is an embryo-specific miRNA that positively regulates grain size. Silencing OsmiR408 expression (miR408KO) using CRISPR technology resulted in small grains. Moreover, we revealed the direct regulatory effects of OsGRF8 on OsMIR408 expression. A genetic analysis further showed that the large-grain phenotype of MIM396 plants could be complemented by miR408KO. Also, several hormone signaling pathways might be involved in the OsmiR396/GRF-meditated grain size regulation. Our findings suggest that genetic regulatory networks comprising various miRNAs, such as OsmiR396 and OsmiR408, may be crucial for controlling rice grain size. Furthermore, the OsmiR396/GRF module may be important for breeding new high-yielding rice varieties.


Subject(s)
Edible Grain/growth & development , MicroRNAs/metabolism , Oryza/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , RNA, Plant/metabolism , Edible Grain/genetics , Oryza/growth & development , Plant Proteins/metabolism
8.
New Phytol ; 225(1): 474-487, 2020 01.
Article in English | MEDLINE | ID: mdl-31407341

ABSTRACT

Ethylene (ET) and jasmonic acid (JA) play important roles in plant defenses against biotic stresses. Crosstalk between JA and ET has been well studied in mediating pathogen resistance, but its roles in piercing-sucking insect resistance are unclear. The brown planthopper (BPH; Nilaparvata lugens) is the most notorious piercing-sucking insect specific to rice (Oryza sativa) that severely affects yield. A genetic analysis revealed that OsEBF1 and OsEIL1, which are in the ET signaling pathway, positively and negatively regulated BPH resistance, respectively. Molecular and biochemical analyses revealed direct interactions between OsEBF1 and OsEIL1. OsEBF1, an E3 ligase, mediated the degradation of OsEIL1 through the ubiquitination pathway, indicating the negative regulation of the ET-signaling pathway in response to BPH infestation. An RNA sequencing analysis revealed that a JA biosynthetic pathway-related gene, OsLOX9, was downregulated significantly in the oseil1 mutant. Biochemical analyses, including yeast one-hybrid, dual luciferase, and electrophoretic mobility shift assay, confirmed the direct regulation of OsLOX9 by OsEIL1. This study revealed the synergistic and negative regulation of JA and ET pathways in response to piercing-sucking insect attack. The synergistic mechanism was realized by transcriptional regulation of OsEIL1 on OsLOX9. OsEIL1-OsLOX9 is a novel crosstalk site in these two phytohormone signaling pathways.


Subject(s)
Cyclopentanes/metabolism , Ethylenes/metabolism , Feeding Behavior , Hemiptera/physiology , Oryza/metabolism , Oryza/parasitology , Oxylipins/metabolism , Animals , Gene Expression Regulation, Plant , Models, Biological , Mutation/genetics , Proteolysis , Subcellular Fractions/metabolism , Ubiquitination
9.
Rice (N Y) ; 12(1): 40, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31147794

ABSTRACT

BACKGROUND: Rice (Oryza sativa) panicle architecture is the major determinant of the ideal plant architecture that directly influence yield potential. Many genes influencing development of primary branches, secondary branches, spikelet and pedicel would also influence panicle architecture, which is thus a complex trait regulated by genes from various aspects. miR156, an extensively studied miRNA, has recently emerged as promising target for crop improvement because of its role in plant architecture regulation, such as the number of tillers, plant height and the panicle architecture. Increasing evidence suggests that miR156 might play an important role in panicle architecture regulation. MAIN BODY: To study the detailed function of miR156 in rice panicle architecture regulation, we examined the genetic interaction or transcriptional regulation of miR156/OsSPL to other panicle regulating genes. Our results revealed that expression of many panicle related genes were influenced by miR156. Through biochemical analysis, we further proved that miR156 directly regulated the axillary meristem regulating gene, LAX1, at the transcription level. And the intimate relations between miR156 and LAX1, and miR156 and LAX2 were also uncovered by genetic analysis. On the other hand, a tight genetic linkage between miR156 and RCN2, the panicle branch promoting gene, was also detected, which suggested a buffering mechanism for the miR156 mediated panicle architecture regulation. Furthermore, genetic analysis also demonstrated that miR156 functioned in the same pathway with OsRA2 to regulate pedicel length. SHORT CONCLUSION: Altogether, miR156 integrates several genetic pathways mediated by genes such as LAX1, LAX2, RCN2 and OsRA2, and comprehensively regulates panicle development in rice. Based on these analysis, we concluded that miR156 acts as an important regulator for panicle architecture through influencing various aspects of panicle development.

10.
Nat Plants ; 5(8): 902, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31097775

ABSTRACT

In the Supplementary Information file originally published with this Article, the authors mistakenly omitted accompanying legends for Supplementary Figures 1-15; this has now been amended.

11.
Nat Plants ; 5(4): 389-400, 2019 04.
Article in English | MEDLINE | ID: mdl-30886331

ABSTRACT

Breeding crops with resistance is an efficient way to control diseases. However, increased resistance often has a fitness penalty. Thus, simultaneously increasing disease resistance and yield potential is a challenge in crop breeding. In this study, we found that downregulation of microRNA-156 (miR-156) and overexpression of Ideal Plant Architecture1 (IPA1) and OsSPL7, two target genes of miR-156, enhanced disease resistance against bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), but reduced rice yield. We discovered that gibberellin signalling might be partially responsible for the disease resistance and developmental defects in IPA1 overexpressors. We then generated transgenic rice plants expressing IPA1 with the pathogen-inducible promoter of OsHEN1; these plants had both enhanced disease resistance and enhanced yield-related traits. Thus, we have identified miR-156-IPA1 as a novel regulator of the crosstalk between growth and defence, and we have established a new strategy for obtaining both high disease resistance and high yield.


Subject(s)
Crop Production/methods , Disease Resistance/physiology , Oryza/growth & development , Plant Proteins/physiology , Gene Expression Regulation, Plant , MicroRNAs/physiology , Oryza/physiology , Plant Diseases/immunology , Plant Diseases/microbiology , Xanthomonas
12.
Rice (N Y) ; 12(1): 9, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30796564

ABSTRACT

BACKGROUND: In plants, basic helix-loop-helix (bHLH) proteins form the largest transcription factor (TF) family. Among them, HLH proteins are a small group of atypical members that lack the basic domain, and form dimers with bHLH proteins. Although bHLH proteins have been proved to play important roles in plant development and physiology, the function of HLH proteins is rarely studied, not to mention in plant biotic resistance. Brown planthopper (BPH) is a kind of rice-specific insect that causes devastating yield losses each year. RESULTS: In this study, we identified OsHLH61 gene that encodes HLH protein. OsHLH61 gene could be highly induced by BPH infestation. Furthermore, Methyl Jasmonic acid (Me-JA) and cis-12-oxo- phytodienoic acid (OPDA) induced expression of OsHLH61, while SA repressed it. We knocked down expression of OsHLH61 by RNA interference (RNAi), the transgenic plants were susceptible to BPH infestation. RNA-seq analysis revealed that some pathogen-related (PR) genes in the Salicylic acid (SA) signaling pathway that mediate plant immunity were obviously down-regulated in the OsHLH61 RNAi plants. Meanwhile, yeast two-hybrid assay and bimolecular luciferase complementation (BiLC) analysis identified bHLH096 to be an interacting factor of OsHLH61. Also, some PR genes were down-regulated in the OsbHLH96 over expressing lines. Expression of OsbHLH96 was inhibited. Besides, OsbHLH96 might interact with Jasmonate Zim-Domain3 (OsJAZ3). CONCLUSION: Altogether, we identified an OsHLH61-OsbHLH96 complex that might mediate defense to BPH through regulating PR genes. And OsHLH61-OsbHLH96 might be important in mediating SA and JA signaling crosstalk.

13.
Plant Biotechnol J ; 17(8): 1657-1669, 2019 08.
Article in English | MEDLINE | ID: mdl-30734457

ABSTRACT

Multi-functional microRNAs (miRNAs) are emerging as key modulators of plant-pathogen interactions. Although the involvement of some miRNAs in plant-insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (BPH) is the most notorious rice (Oryza sativa)-specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the miRNAs involved in rice-BPH interactions, we performed miRNA sequencing and identified BPH-responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (MIM396) in three genetic backgrounds indicated that OsmiR396 negatively regulated BPH resistance. Overexpression of one BPH-responsive target gene of OsmiR396, growth regulating factor 8 (OsGRF8), showed resistance to BPH. Furthermore, the flavonoid contents increased in both the OsmiR396-sequestered and the OsGRF8 overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced BPH resistance. Artificial applications of flavonoids to wild type (WT) plants also increased resistance to BPH. A BPH-responsive flavanone 3-hydroxylase (OsF3H) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by OsGRF8. A genetic functional analysis of OsF3H revealed its positive role in mediating both the flavonoid contents and BPH resistance. And analysis of the genetic correlation between OsmiR396 and OsF3H showed that down-regulation of OsF3H complemented the BPH resistance characteristic and simultaneously decreased the flavonoid contents of the MIM396 plants. Thus, we revealed a new BPH resistance mechanism mediated by the OsmiR396-OsGRF8-OsF3H-flavonoid pathway. Our study suggests potential applications of miRNAs in BPH resistance breeding.


Subject(s)
Flavonoids , Hemiptera , MicroRNAs/genetics , Oryza/genetics , Animals , Down-Regulation , Herbivory
14.
J Exp Bot ; 69(21): 5117-5130, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30053063

ABSTRACT

Tiller number and plant height are two of the main features of plant architecture that directly influence rice yield. Auxin and miR156, an extensively studied small RNA (smRNA), are both broadly involved in plant development and physiology, suggesting a possible relationship between the two. In this study, we identified a rice T-DNA insertion cluster and dwarf (cd) mutant that has an increased tiller number and reduced plant height. The T-DNA insertion was in close proximity to the miR156f gene and was associated with its up-regulation. Plants overexpressing miR156f resembled the cd mutant. In contrast, plants overexpressing an miR156f target mimic (MIM156fOE) had a reduced tiller number and increased height. Genetic analysis showed that OsSPL7 is a target of miR156f that regulates plant architecture. Plants overexpressing OsSPL7 had a reduced tiller number, while OsSPL7 RNAi plants had an increased tiller number and a reduced height. We also found that OsSPL7 binds directly to the OsGH3.8 promoter to regulate its transcription. Overexpression of OsGH3.8 and OsGH3.8 RNAi partially complemented the MIM156fOE and cd mutant phenotypes, respectively. Our combined data show that the miR156f-OsSPL7-OsGH3.8 pathway regulates tiller number and plant height in rice, and this pathway may allow crosstalk between miR156 and auxin.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , MicroRNAs/metabolism , Oryza/growth & development , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic
15.
Plant Cell Rep ; 37(7): 993-1002, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29619515

ABSTRACT

KEY MESSAGE: OsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.


Subject(s)
Oryza/physiology , Plant Proteins/genetics , Stress, Physiological/physiology , Acetates/pharmacology , Animals , Cyclopentanes/pharmacology , Ethylenes/pharmacology , Gene Expression Regulation, Plant , Hemiptera , Herbivory , Magnaporthe/pathogenicity , Oryza/drug effects , Oryza/genetics , Oxylipins/pharmacology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Salicylic Acid/pharmacology , Seeds/physiology
16.
Front Physiol ; 9: 1768, 2018.
Article in English | MEDLINE | ID: mdl-30618790

ABSTRACT

Exogenous dsRNA enters the insect body and can induce the RNAi effect only when it is cleaved into siRNA. However, what kinds of base composition are easier to cut and what kinds of siRNA will be produced in vivo is largely unknown. In this study, we found that dsRNA processing into siRNA has sequence preference and regularity in insects. We injected 0.04 mg/g dsRNA into Asian corn borers or cotton bollworms according to their body weight, and then the siRNAs produced in vivo were analyzed by RNA-Seq. We discovered that a large number of siRNAs were produced with GGU nucleotide residues at the 5'- and 3'-ends and produced a siRNA peak on the sequence. Once the GGU site is mutated, the number of siRNAs will decrease significantly and the siRNA peak will also lost. However, in the red flour beetle, a member of Coleoptera, dsRNA was cut at more diverse sites, such as AAG, GUG, and GUU; more importantly, these enzyme restriction sites have a high conservation base of A/U. Our discovery regarding dsRNA in vivo cleavage preference and regularity will help us understand the RNAi mechanism and its application.

17.
Biochem Biophys Res Commun ; 495(1): 487-492, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29122595

ABSTRACT

The cereal crops (such as rice and maize) which belong to the grass family, are the most important grain crops for human beings, and the development of their flower and inflorescence architecture has attracted extensive attention. Although multiple genes involved in the regulation of floral and inflorescence organogenesis have been identified, the underlying molecular mechanisms are largely unknown. Previously, we identified rice depressed palea1 (dp1) mutants with defects in main structure of palea and its enhancer RETARDED PALEA1 (REP1). DP1 is an AT-hook protein while REP1 is a TCP transcription factor, both of which are important regulators of palea development. However, the relationship of these two proteins has not been elucidated yet. Here, we demonstrated that DP1 interacts physically with REP1 both in yeast and in rice protoplasts. Considering the close phylogenetic relationship between maize and rice, we further hypothesize that their orthologs in maize, BARREN STALK FASTIGIATE (BAF1) and BRANCH ANGLE DEFECTIVE 1 (BAD1), may interact physically. Subsequently, we verified their physical interaction, indicating that the interaction between AT-hook proteins and TCP proteins is conserved in rice and maize. Our findings may reveal a novel molecular mechanism of floral and inflorescence development in grasses.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Protein Interaction Maps , Protoplasts/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Phylogeny , Plant Proteins/analysis , Plant Proteins/genetics , Transcription Factors/analysis , Transcription Factors/genetics , Zea mays/genetics
18.
Plant Cell Physiol ; 58(12): 2202-2216, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29048607

ABSTRACT

ATP-dependent chromatin-remodeling factors use the energy of ATP hydrolysis to alter the structure of chromatin and are important regulators of eukaryotic gene expression. One such factor encoded by CHR5 (Chromatin-Remodeling Factor 5) in Arabidopsis (Arabidopsis thaliana) was previously found to be involved in regulation of growth and development. Here we show that CHR5 is required for the up-regulation of the intracellular immune receptor gene SNC1 (SUPPRESSOR OF npr1-1, CONSTITUTIVE1) and consequently the autoimmunity induced by SNC1 up-regulation. CHR5 functions antagonistically with another chromatin-remodeling gene DDM1 (DECREASED DNA METHYLATION 1) and independently with a histone mono-ubiquitinase HUB1 (HISTONE MONOUBIQUITINATION 1) in SNC1 regulation. In addition, CHR5 is a positive regulator of SNC1-independent plant immunity against the bacterial pathogen Pseudomonas syringae. Furthermore, the chr5 mutant has increased nucleosome occupancy in the promoter region relative to the gene body region at the whole-genome level, suggesting a global role for CHR5 in remodeling nucleosome occupancy. Our study thus establishes CHR5 as a positive regulator of plant immune responses including the expression of SNC1 and reveals a role for CHR5 in nucleosome occupancy which probably impacts gene expression genome wide.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis/immunology , Nucleosomes/metabolism , Plant Immunity/physiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium-Binding Proteins , Carrier Proteins/genetics , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Membrane Proteins/genetics , Multigene Family , Mutation , NLR Proteins/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plants, Genetically Modified , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Front Plant Sci ; 8: 1538, 2017.
Article in English | MEDLINE | ID: mdl-28955349

ABSTRACT

The panicle architecture of rice is an important characteristic that influences reproductive success and yield. It is largely determined by the number and length of the primary and secondary branches. The number of panicle branches is defined by the inflorescence meristem state between determinacy and indeterminacy; for example, the maize ramosa2 (ra2) mutant has more branches in its tassel through loss of spikelet determinacy. Some genes and factors influencing the number of primary and secondary branches have been studied, but little is known about the molecular mechanism underlying pedicel development, which also influences panicle architecture. We report here that rice OsRAMOSA2 (OsRA2) gene modifies panicle architecture through regulating pedicel length. Ectopic expression of OsRA2 resulted in a shortened pedicel while inhibition of OsRA2 through RNA interference produced elongated pedicel. In addition, OsRA2 influenced seed morphology. The OsRA2 protein localized to the nucleus and showed transcriptional activation in yeast; in accordance with its function in pedicel development, OsRA2 mRNA was enriched in the anlagen of axillary meristems, such as primary and secondary branch meristems and the spikelet meristems of young panicles. This indicates a conserved role of OsRA2 for shaping the initial steps of inflorescence architecture. Genetic analysis revealed that OsRA2 may control panicle architecture using the same pathway as that of the axillary meristem gene LAX1 (LAX PANICLE1). Moreover, OsRA2 acted downstream of RCN2 in regulating pedicel and branch lengths, but upstream of RCN2 for control of the number of secondary branches, indicating that branch number and length development in the panicle were respectively regulated using parallel pathway. Functional conservation between OsRA2 and AtLOB, and the conservation and diversification of RA2 in maize and rice are also discussed.

20.
Plant Physiol ; 175(1): 424-437, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28701352

ABSTRACT

Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Calcium Signaling , Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Calcium-Binding Proteins , Calcium-Transporting ATPases/genetics , Carrier Proteins/genetics , Cell Membrane/metabolism , Cytosol/metabolism , Genes, Reporter , Homeostasis , Loss of Function Mutation , Membrane Proteins/genetics , Plant Immunity , Plant Stomata/genetics , Plant Stomata/immunology , Plant Stomata/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...