Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 779
Filter
1.
Future Sci OA ; 10(1): FSO928, 2024.
Article in English | MEDLINE | ID: mdl-38827810

ABSTRACT

Aim: Current head and neck squamous cell carcinoma (HNSCC) diagnostic tools are limited, so this study aimed to identify diagnostic microRNA (miRNA) biomarkers from plasma. Materials & methods: A total of 76 HNSCC and 76 noncancerous control (NC) plasma samples underwent microarray analysis and quantitative reverse transcription PCR to screen for diagnostic plasma miRNAs. The diagnostic potential of the miRNAs was evaluated by the receiver operating characteristic curve. Results: miR-95-3p and miR-579-5p expression was shown to be significantly upregulated, and that of miR-1298-3p to be downregulated in HNSCC patients compared with controls. The final diagnostic panel included miR-95-3p, miR-579-5p and miR-1298-3p with an area under the curve of 0.83. Conclusion: This three-miRNA panel has potential for the diagnosis of HNSCC.


Early detection of head and neck cancer is crucial. In this study, we established a diagnostic model based on blood samples. This is a convenient diagnostic and screening tool that can help people early detect head and neck cancer.

2.
Mol Biol Evol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842255

ABSTRACT

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100-200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.

3.
Biophys J ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835167

ABSTRACT

Cell mechanics are pivotal in regulating cellular activities, diseases progression, and cancer development. However, the understanding of how cellular viscoelastic properties vary in physiological and pathological stimuli remains scarce. Here, we develop a hybrid self-similar hierarchical theory-microrheology approach to accurately and efficiently characterize cellular viscoelasticity. Focusing on two key cell types associated with livers fibrosis-the capillarized liver sinusoidal endothelial cells and activated hepatic stellate cells-we uncover a universal two-stage power-law rheology characterized by two distinct exponents, αshort and αlong. The mechanical profiles derived from both exponents exhibit significant potential for discriminating among diverse cells. This finding suggests a potential common dynamic creep characteristic across biological systems, extending our earlier observations in soft tissues. Using a tailored hierarchical model for cellular mechanical structures, we discern significant variations in the viscoelastic properties and their distribution profiles across different cell types and states from the cytoplasm (elastic stiffness E1 and viscosity η), to a single cytoskeleton fiber (elastic stiffness E2), and then to the cell level (transverse expansion stiffness E3). Importantly, we construct a logistic-regression-based machine-learning model using the dynamic parameters that outperforms conventional cell-stiffness-based classifiers in assessing cell states, achieving an area under the curve of 97% vs. 78%. Our findings not only advance a robust framework for monitoring intricate cell dynamics but also highlight the crucial role of cellular viscoelasticity in discerning cell states across a spectrum of liver diseases and prognosis, offering new avenues for developing diagnostic and therapeutic strategies based on cellular viscoelasticity.

4.
Front Pharmacol ; 15: 1393693, 2024.
Article in English | MEDLINE | ID: mdl-38855753

ABSTRACT

Colorectal cancer is a common malignant tumor with high mortality, for which chemotherapy resistance is one of the main reasons. The high expression of ABCG2 in the cancer cells and expulsion of anticancer drugs directly cause multidrug resistance (MDR). Therefore, the development of new ABCG2 inhibitors that block the active causes of MDR may provide a strategy for the treatment of colorectal cancer. In this study, we find that dorsomorphin (also known as compound C or BML-275) potently inhibits the transporter activity of ABCG2, thereby preserving the chemotherapeutic agents mitoxantrone and doxorubicin to antagonize MDR in ABCG2-overexpressing colorectal cancer cells. Additionally, dorsomorphin does not alter ABCG2 protein expression. The results of molecular docking studies show that dorsomorphin is bound stably to the ABCG2-binding pocket, suggesting that dorsomorphin is a potent ABCG2 inhibitor that attenuates ABCG2-mediated MDR in colorectal cancer.

5.
World J Gastrointest Oncol ; 16(5): 1995-2005, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764807

ABSTRACT

BACKGROUND: Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer. AIM: To investigate causal associations between blood metabolites and colon cancer. METHODS: The study utilized a two-sample Mendelian randomization (MR) analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer. The primary method of analysis used was the inverse variance weighted model. To further validate the results several sensitivity analyses were performed, including Cochran's Q test, MR-Egger intercept test, and MR robust adjusted profile score. These additional analyses were conducted to ensure the reliability and robustness of the findings. RESULTS: After rigorous selection for genetic variation, 486 blood metabolites were included in the MR analysis. We found Mannose [odds ratio (OR) = 2.09 (1.10-3.97), P = 0.024], N-acetylglycine [OR = 3.14 (1.78-5.53), P = 7.54 × 10-8], X-11593-O-methylascorbate [OR = 1.68 (1.04-2.72), P = 0.034], 1-arachidonoylglycerophosphocholine [OR = 4.23 (2.51-7.12), P = 6.35 × 10-8] and 1-arachidonoylglycerophosphoethanolamine 4 [OR = 3.99 (1.17-13.54), P = 0.027] were positively causally associated with colorectal cancer, and we also found a negative causal relationship between Tyrosine [OR = 0.08 (0.01-0.63), P = 0.014], Urate [OR = 0.25 (0.10-0.62), P = 0.003], N-acetylglycine [0.73 (0.54-0.98), P = 0.033], X-12092 [OR = 0.89 (0.81-0.99), P = 0.028], Succinylcarnitine [OR = 0.48 (0.27-0.84), P = 0.09] with colorectal cancer. A series of sensitivity analyses were performed to confirm the rigidity of the results. CONCLUSION: This study showed a causal relationship between 10 blood metabolites and colorectal cancer, of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors. The other five blood metabolites are protective factors.

6.
Inorg Chem ; 63(23): 10786-10797, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38772008

ABSTRACT

To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.

7.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article in English | MEDLINE | ID: mdl-38741950

ABSTRACT

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

8.
Cancers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730692

ABSTRACT

Pediatric brain tumors are often noted to be different from their adult counterparts in terms of molecular features. Primary CNS lymphomas (PCNSLs) are mostly found in elderly adults and are uncommon in children and teenagers. There has only been scanty information about the molecular features of PCNSLs at a young age. We examined PCNSLs in 34 young patients aged between 7 and 39 years for gene rearrangements of BCl2, BCL6, CCND1, IRF4, IGH, IGL, IGK, and MYC, homozygous deletions (HD) of CDKN2A, and HLA by FISH. Sequencing was performed using WES, panel target sequencing, or Sanger sequencing due to the small amount of available tissues. The median OS was 97.5 months and longer than that for older patients with PCNSLs. Overall, only 14 instances of gene rearrangement were found (5%), and patients with any gene rearrangement were significantly older (p = 0.029). CDKN2A HD was associated with a shorter OS (p < 0.001). Only 10/31 (32%) showed MYD88 mutations, which were not prognostically significant, and only three of them were L265P mutations. CARD11 mutations were found in 8/24 (33%) cases only. Immunophenotypically, the cases were predominantly GCB, in contrast to older adults (61%). In summary, we showed that molecular findings identified in the PCNSLs of the older patients were only sparingly present in pediatric and young adult patients.

9.
J Org Chem ; 89(9): 6474-6488, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38607334

ABSTRACT

We report a step-economic strategy for the direct synthesis of spiro polycyclic N-heterocycles and indolecarbazole-fused naphthoquinones by merging oxidative coupling and cascade palladium-catalyzed intramolecular oxidative cyclization. In the protocol, bi-indolylnaphthoquinones were first synthesized by oxidative coupling of indoles and naphthoquinones. Subsequent cascade palladium-catalyzed intramolecular oxidative cyclization of bi-indolylnaphthoquinones gave spiro polycyclic N-heterocycles and indolecarbazoles. The intramolecular oxidative cyclization approach could also be realized by the presence or absence of iron catalysts under standard conditions. This protocol is featured with moderate to excellent yields, a wide substrate scope, and divergent structures of products.

11.
Inorg Chem ; 63(18): 8194-8205, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38639416

ABSTRACT

Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.

12.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38648728

ABSTRACT

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Multiple Myeloma , Small Molecule Libraries , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/therapeutic use , Molecular Structure
13.
Biomedicines ; 12(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38540292

ABSTRACT

Colorectal cancer is a global malignancy with a high incidence and mortality rate. THZ2, a small inhibitor targeted CDK7, could inhibit multiple human tumor growths including small cell lung cancer, triple-negative breast cancer, ovarian cancer. However, the effect of THZ2 on inflammation, especially on colitis-associated colorectal cancer, is still unknown. In this study, we assessed the anti-inflammatory and anti-tumor effect of THZ2 in the mouse models of dextran sulfate sodium (DSS)-induced acute colitis and azoxymethane (AOM)/DSS-induced colitis-associated colorectal cancer. We found that THZ2 ameliorated inflammatory symptoms, including bleeding and diarrhea, in mouse models of DSS-induced acute colitis and AOM/DSS-induced colorectal cancer. The results of Western blot and immunohistochemistry showed that THZ2 rescued the up-regulated expression of COX2, IL-6, ß-catenin, and snail in the mouse models. Moreover, THZ2 inhibits the development of colorectal cancer in the mouse model of AOM/DSS-induced colitis-associated colorectal cancer. Generally, THZ2 not only can inhibit DSS-induced colitis, but also can hinder AOM/DSS-induced colorectal cancer.

14.
Biomol Biomed ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552230

ABSTRACT

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.

15.
Nutr Cancer ; 76(5): 432-441, 2024.
Article in English | MEDLINE | ID: mdl-38439655

ABSTRACT

BACKGROUND: Observational studies suggests that diets and medications affect bladder cancer (BC) development, which are subject to confounding and difficult to make causal inference. Here we aimed to investigate whether those observational associations are causal and determining the potential directions and pathways. METHODS: We used 2-sample Mendelian randomization (MR) analysis to assess associations of dietary intakes, medication uses and molecules with BC risk. Genetic summary data were derived from participants of predominantly European ancestry with rigorous instruments selection, where univariable MR, mediation MR and multivariable MR were performed. RESULTS: The results of univariable MR showed 4 dietary intakes and 4 medication uses having a protective effect on BC, while 4 circulating metabolites, 440 circulating proteins and 2 gut microbes were observed to be causally associated with BC risk. Through mediation MR, we found 572 analytes showing consistent mediating effects between dietary intakes or medication uses and BC risk. Furthermore, 9 out of 16 diet-medication pairs showed significant interactions and alterations on BC when consumed jointly. CONCLUSION: In summary, the findings obtained from the current study have important implications for informing prevention strategies that point to potential lifestyle interventions or medication prescriptions to reduce the risk of developing BC.HighlightsThe current study extends observational literature in showing the importance of diets and medications on bladder cancer prevention.The associations of diets and medications on bladder cancer prevention might be through circulating metabolites, circulating proteins and gut microbiotaOur results provide a new understanding of interactions in certain diet-medication pairs which should be taken into account by both physicians and patients during the development of a treatment strategy.


Subject(s)
Ascomycota , Urinary Bladder Neoplasms , Humans , Mendelian Randomization Analysis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/prevention & control , Life Style , Eating
16.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38484122

ABSTRACT

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Subject(s)
Lung Neoplasms , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins c-ret/genetics , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Lung Neoplasms/drug therapy
17.
Front Plant Sci ; 15: 1310346, 2024.
Article in English | MEDLINE | ID: mdl-38444537

ABSTRACT

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

18.
Acta Pharm Sin B ; 14(3): 905-952, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486980

ABSTRACT

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.

19.
J Colloid Interface Sci ; 665: 554-563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552572

ABSTRACT

The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a ß-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.

20.
ACS Appl Mater Interfaces ; 16(11): 13745-13755, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446712

ABSTRACT

Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.

SELECTION OF CITATIONS
SEARCH DETAIL
...