Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Insect Biochem Physiol ; 104(3): e21691, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32410326

ABSTRACT

In the present study, diel pattern in gut microbial communities in insects were evaluated. Lymantria dispar asiatica fourth instar larvae (72 ± 2 hr after molting) at noon (LdD) and midnight (LdN) were used for a comparative analysis of the gut microbial community. Ten bacterial operational taxonomic units (OTUs) were shared between LdD and LdN samples. One bacterial OTU was specific to LdD. The dominant gut microbes were OTU72 in LdD and OTU75 in LdN. A linear discriminant analysis effect size cladogram suggested that ten bacterial OTUs maintain significant differences in relative abundances between LdD and LdN. These results agreed with the discrete ellipses between LdD and LdN in principal coordinates analysis plots. Additionally, using phylogenetic investigation of communities by reconstruction of unobserved states, the gut microbial community was assigned to 23 functional terms, among which 22 exhibited significant differences between LdD and LdN. To conclude, the present study documented a diel pattern in the gut microbial community of L. dispar asiatica larvae.


Subject(s)
Circadian Rhythm , Gastrointestinal Microbiome/physiology , Moths/microbiology , Animals , Bacteria/classification , Larva/microbiology , Moths/growth & development , Phylogeny
2.
Arch Insect Biochem Physiol ; 104(3): e21676, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32323892

ABSTRACT

The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.


Subject(s)
Aconitine/pharmacology , Gastrointestinal Microbiome/drug effects , Moths/microbiology , Nicotine/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Larix , Larva/drug effects , Larva/microbiology , Moths/drug effects , Moths/growth & development , Plant Leaves , RNA, Ribosomal, 16S , Salix
3.
Pestic Biochem Physiol ; 164: 196-202, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32284127

ABSTRACT

Lymantria dispar asiatica is a globally distributed herbivorous pest. Avermectin is a highly effective, broad-spectrum insecticide. In this study, fourth instar L. dispar asiatica larvae were exposed to a LC30 dose of avermectin. The structure and function of larval gut microbial community was analyzed to examine how gut microbiota in L. dispar asiatica larvae responded to avermectin stress. Results showed that the structure and function of gut microbial community in L. dispar asiatica larvae were varied by avermectin stress. To be precise, more than half quantity of the observed Optical Taxonomic Units (OTUs) showed significantly different abundances under avermectin stress. Linear discriminant analysis effect size (LEfSe) suggested nine bacterial genera and 12 fungal genera contributed to the different gut microbial community structure in L. dispar asiatica larvae. Gut microbial function classification (PICRUSt and FUNGuild) suggested that three bacterial function categories and a fungal function guild were significantly increased, and two fungal function guilds were significantly decreased by avermectin stress. This study furthers our understanding of the physiology of L. dispar asiatica larvae under avermectin stress, and is an essential step towards future development of potential pesticide targets.


Subject(s)
Insecticides , Lepidoptera , Moths , Animals , Ivermectin/analogs & derivatives , Larva
4.
Arch Insect Biochem Physiol ; 103(4): e21654, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31916310

ABSTRACT

To study dietary pH effects on Lymantria dispar asiatica larvae and provide a theoretical basis for its control in different forests, phosphate buffers (PBs) of pH 6, 7, and 8 were used to prepare experimental diets. The diet prepared with pH 6 PB was named as DPB6, with pH 8 PB as DPB8, and with pH 7 PB as DPB7 (control). The dietary pH was 5.00 in DPB6, 6.05 in control, and 6.50 in DPB8. After feeding on the diets with different pH values for 84 hr, fourth-instar caterpillars were randomly collected. Growth and various physiological traits were determined and 16S recombinant DNA sequencing was performed using the intestinal microflora of surviving larvae. Results showed that the mortality was 30% in DPB6, and 10% in DPB8, while no mortality was observed in control. The partial least squares discriminant analyses suggested that diets prepared with PB of different pH resulted in different food intake, amount of produced feces, weight gain, digestive enzyme activities, and antioxidant enzyme activities in larvae. Interestingly, both the highest weight gain and the lowest total antioxidant capacities were seen in control larvae. Results also showed that the larval gut microbiota community structure was significantly affected by dietary pH. Moreover, linear discriminant analysis effect size suggested that the family Acetobacteraceae in control, genus Prevotella in DPB8, and genus Lactococcus, family Flavobacteriaceae, family Mitochondria, and family Burkholderiaceae in DPB6 contributed to the diversity of the larval gut microbial community.


Subject(s)
Animal Feed/analysis , Gastrointestinal Microbiome/drug effects , Moths/growth & development , Moths/microbiology , Animals , Diet , Hydrogen-Ion Concentration , Larva/growth & development , Larva/microbiology
5.
Arch Insect Biochem Physiol ; 102(2): e21597, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31328829

ABSTRACT

To understand how ambient temperature affect the gypsy moth larvae, and provide a theoretical basis for pest control in different environments. Fourth instar gypsy moth larvae were incubating for 3 hr at 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃, respectively. Afterward, digestive and antioxidant enzyme activities, total antioxidant capacity, and intestinal microflora community were analyzed to reveal how the caterpillars respond to ambient temperature stress. Results showed that both digestive and antioxidant enzymes were regulated by the ambient temperature. The optimum incubation temperatures of protease, amylase, trehalase, and lipase in gypsy moth larvae were 30℃, 25℃, and 20℃, respectively. When the incubation temperature was deviated optimum temperatures, digestive enzyme activities would be downregulated depending on the extent of temperature stress. In addition, glutathione S-transferase, peroxidase, catalase, and polyphenol oxidase would be activated under a sufferable temperature stress, but superoxide dismutase and carboxylesterase (CarE) would be inhibited. In addition, results showed that the top two abundant phyla were Proteobacteria and Firmicutes. The phylum Firmicutes abundance was decreased and phylum Proteobacteria abundance was increased by ambient temperature stress. Moreover, it suggested that gypsy moth caterpillars at different ambient temperature mainly differed from each other by Escherichia-Shigella and Bifidobacterium in control, Acinetobacter in T15, and Lactobacillus in T40, respectively.

6.
Rev Sci Instrum ; 88(11): 113504, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195413

ABSTRACT

The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

7.
Genome Res ; 20(2): 265-72, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20019144

ABSTRACT

Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.


Subject(s)
Genome, Human , Human Genome Project , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Asian People/genetics , Black People/genetics , Humans , Oligonucleotide Array Sequence Analysis/economics , Oligonucleotide Array Sequence Analysis/methods , Sequence Alignment/economics , Sequence Analysis, DNA/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...