Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 82: 153447, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33444943

ABSTRACT

BACKGROUND: Carya cathayensis1is a commercially cultivated plant in the Zhejiang Province, China. Its nuts exhibit properties of tonifying kidneys and relieving asthma. There have been a few pharmacological studies addressing the function of the leaves of this plant. Our previous studies on C. cathayensis leaf extract (CCE) showed a significant inhibitory effect on weight gain in mice fed a high-fat diet, particularly in female mice. HYPOTHESIS/PURPOSE: To investigate the biological and molecular mechanisms underlying the regulation of ectopic adipose tissue deposition by CCE in ovariectomized rats fed a high-fat diet. STUDY DESIGN: Female Sprague-Dawley rats were ovariectomized and treated with CCE (50, 100, and 200 mg/kg body weight, oral) or estradiol (1 mg/kg body weight, oral) for 8 weeks. METHODS: CCE was subjected to high-performance liquid chromatography to quantify major components. Body weight gain, abdominal fat coefficient, and aortic arch fat coefficient were determined; serum was collected for biochemical analysis; tissues were collected for histopathological examination, quantitative polymerase chain reaction (Q-PCR), and western blotting. RESULTS: The total flavonoid content was determined to be 57.30% in the CCE and comprised chrysin, cardamomin, pinostrobin chalcone, and pinocembrin. Compared with the model group (OVX), CCE treatment reduced body weight gain, abdominal and aortic arch fat coefficients, serum and hepatic lipid profiles, including total cholesterol (TC), total triglycerides (TG), and free fatty acids (FFA) levels; decreased lipid droplets in liver cells; decreased fat accumulation in the aortic arch blood vessel wall and increased its smoothness; decreased the diameter of abdominal fat cells; and reduced serum leptin and adiponectin levels significantly. Serum adiponectin levels significantly correlated with serum TG and hepatic TC levels. Leptin levels positively correlated with serum TG levels and negatively correlated with hepatic TG. Leptin mRNA, peroxisome proliferator-activated receptor (PPARγ) mRNA, and protein expression levels in abdominal adipose tissue were significantly down-regulated. Adiponectin mRNA levels were slightly reduced but not significantly. CONCLUSION: CCE attenuated ectopic fat deposition induced by deficient estrogen and a high-fat diet in rats; this may be associated with activated leptin sensitivity, improved leptin resistance, and regulated adiponectin levels. CCE may improve adipose function to regulate adipocyte differentiation by down-regulating PPARγ. Overall, these results suggest that CCE is a potential phytoestrogen.


Subject(s)
Abdominal Fat/metabolism , Aorta, Thoracic/metabolism , Carya/chemistry , Diet, High-Fat , Fats/metabolism , Liver/metabolism , Ovariectomy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Female , Leptin/blood , Mice , Rats , Rats, Sprague-Dawley , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...