Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
RSC Med Chem ; 13(8): 986-997, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36092143

ABSTRACT

As sigma receptors are highly expressed on various cancer cells, radiolabeled sigma receptor ligands have been developed as imaging and therapeutic probes for cancer. Previously, we synthesized and evaluated a radioiodinated vesamicol derivative, 2-(4-[125I](4-iodophenyl)piperidine)cyclohexanol ((+)-[125I]pIV), and a radioiodinated aza-vesamicol derivative, trans-2-(4-(3-[125I](4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]2), as sigma-1 receptor-targeting probes. In order to obtain sigma receptor-targeting probes with superior biodistribution characteristics, we firstly synthesized twelve bromine-containing aza-vesamicol derivatives and evaluated their affinity for sigma receptors. One such derivative exhibited high selectivity for the sigma-1 receptor and another exhibited high affinity for both the sigma-1 and sigma-2 receptors. Thus, their halogen-substituted iodine- and radioiodine-containing compounds were prepared. The 125I-labeled compounds exhibited high uptake in tumor and lower uptake in non-target tissues than the two previously developed and evaluated 125I-labeled sigma receptor-targeting probes, [125I]pIV and [125I]2. Therefore, these novel radioiodine-labeled compounds should be promising as sigma receptor-targeting probes.

2.
J Med Chem ; 65(3): 1835-1847, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35015529

ABSTRACT

Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor approved for treating non-small-cell lung cancer (NSCLC) with EGFR mutations. Genetic testing is required to detect the mutation for selecting patients who can use osimertinib. Here, we report an attempt to develop nuclear imaging probes that detect the EGFR mutations. We designed and synthesized I-osimertinib and Br-osimertinib with a radioactive or nonradioactive halogen atom at an indole ring in osimertinib and evaluated them. In vitro assays suggested that both I-osimertinib and Br-osimertinib exhibit a specifically high activity toward NSCLC with EGFR L858R/T790M mutations. In biodistribution experiments, the accumulation of both [125I]I-osimertinib and [77Br]Br-osimertinib in tumors with mutations was significantly higher than that in blood and muscle. However, these osimertinib derivatives showed a significantly higher accumulation in lungs than in tumors. Therefore, for detecting the mutations in lung cancer, further structural modifications of the probes are required.


Subject(s)
Acrylamides/chemistry , Aniline Compounds/chemistry , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Radiopharmaceuticals/chemistry , Acrylamides/chemical synthesis , Acrylamides/pharmacokinetics , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacokinetics , Animals , Bromine Radioisotopes/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Halogenation , Humans , Iodine Radioisotopes/chemistry , Male , Mice, Inbred BALB C , Mice, Nude , Mutation , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
3.
Ann Nucl Med ; 36(3): 235-243, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34837162

ABSTRACT

OBJECTIVE: Angiogenesis is an important process facilitating the healing process after myocardial infarction. 125I-RGD imaging may be a promising candidate to image angiogenesis but may also detect inflammation. METHODS: Left coronary artery was occluded for 30 min, followed by reperfusion in a rat model (n = 31). One, 3, 7 and 14 days, 1 and 2 months later, Triple-tracer autoradiography was performed. 125I-RGD (1.5 MBq) and 201Tl (15 MBq) were injected at 80 and 10 min before sacrifice. Left coronary artery was reoccluded and 99mTc-MIBI (150-180 MBq) was injected 1 min before sacrifice to verify the area at risk. Angiogenesis and macrophage infiltration were evaluated by immunohistochemical analysis with anti-alpha-smooth muscle actin and anti-CD68, respectively. RESULTS: 125I-RGD uptake ratio in the area at risk was weak at day 3 (1.23 ± 0.23 but increased markedly and peaked at day 7 (2.27 ± 0.37) followed by a gradual reduction until 1 and 2 months later (1.93 ± 0.16 at 1 month, 1.58 ± 0.15 at 2 month). In the immunohistochemical analysis, copious staining of anti-CD68 cells was observed, with anti-SMA cells stained only minimally at day 3. The number of anti-CD68 cells was decreased significantly at day 7 but largely absent at 1 month. Anti-SMA positive cells peaked at day 7 and reduced gradually until 1 month. CONCLUSIONS: Myocardial 125I-RGD uptake reflects angiogenesis rather than inflammation after myocardial infarction.


Subject(s)
Integrin alphaVbeta3 , Myocardial Infarction , Animals , Feasibility Studies , Humans , Iodine Radioisotopes , Myocardial Infarction/diagnostic imaging , Oligopeptides , Radiopharmaceuticals , Rats
4.
PLoS One ; 16(12): e0261226, 2021.
Article in English | MEDLINE | ID: mdl-34910775

ABSTRACT

Since long-chain fatty acids work as the primary energy source for the myocardium, radiolabeled long-chain fatty acids play an important role as imaging agents to diagnose metabolic heart dysfunction and heart diseases. With the aim of developing radiogallium-labeled fatty acids, herein four fatty acid-based tracers, [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA, which are [67Ga]Ga-HBED-CC and [67Ga]Ga-DOTA conjugated with pentadecanoic acid (PDA) and 3-methylhexadecanoic acid (MHDA), were synthesized, and their potential for myocardial metabolic imaging was evaluated. Those tracers were found to be chemically stable in 0.1 M phosphate buffered saline. Initial [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA uptakes in the heart at 0.5 min postinjection were 5.01 ± 0.30%ID/g, 5.74 ± 1.02%ID/g, 5.67 ± 0.22%ID/g, and 5.29 ± 0.10%ID/g, respectively. These values were significantly lower than that of [123I]BMIPP (21.36 ± 2.73%ID/g). For their clinical application as myocardial metabolic imaging agents, further structural modifications are required to increase their uptake in the heart.


Subject(s)
Fatty Acids/chemical synthesis , Gallium Radioisotopes/pharmacology , Heart/diagnostic imaging , Animals , Cell Line, Tumor , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Edetic Acid/metabolism , Fatty Acids/pharmacology , Gallium/chemistry , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Japan , Male , Mice , Myocardium/pathology , Positron-Emission Tomography/methods , Radioisotopes , Tissue Distribution , Tomography, X-Ray Computed/methods
5.
Molecules ; 26(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34684688

ABSTRACT

We recently developed 125I- and 211At-labeled monomer RGD peptides using a novel radiolabeling method. Both labeled peptides showed high accumulation in the tumor and exhibited similar biodistribution, demonstrating their usefulness for radiotheranostics. This study applied the labeling method to a dimer RGD peptide with the aim of gaining higher accumulation in tumor tissues based on improved affinity with αvß3 integrin. We synthesized an iodine-introduced dimer RGD peptide, E[c(RGDfK)] (6), and an 125/131I-labeled dimer RGD peptide, E[c(RGDfK)]{[125/131I]c[RGDf(4-I)K]} ([125/131I]6), and evaluated them as a preliminary step to the synthesis of an 211At-labeled dimer RGD peptide. The affinity of 6 for αvß3 integrin was higher than that of a monomer RGD peptide. In the biodistribution experiment at 4 h postinjection, the accumulation of [125I]6 (4.12 ± 0.42% ID/g) in the tumor was significantly increased compared with that of 125I-labeled monomer RGD peptide (2.93 ± 0.08% ID/g). Moreover, the accumulation of [125I]6 in the tumor was greatly inhibited by co-injection of an excess RGD peptide. However, a single injection of [131I]6 (11.1 MBq) did not inhibit tumor growth in tumor-bearing mice. We expect that the labeling method for targeted alpha therapy with 211At using a dimer RGD peptide could prove useful in future clinical applications.


Subject(s)
Glioblastoma/drug therapy , Integrin alphaVbeta3/metabolism , Iodine Radioisotopes/pharmacokinetics , Isotope Labeling/methods , Oligopeptides/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Animals , Cell Line, Tumor , Dimerization , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
6.
Mol Pharm ; 18(9): 3553-3562, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34403257

ABSTRACT

Probes for radiotheranostics could be produced by introducing radionuclides with similar chemical characteristics into the same precursors. We recently developed an 211At-labeled RGD peptide and a corresponding radioiodine-labeled RGD peptide. Both labeled peptides accumulated in large quantities in the tumor with similar biodistribution, demonstrating their usefulness for radiotheranostics. In this study, we hypothesized that probes for radiotheranostics combined with multiradionuclides, such as 68Ga and 211At, have useful clinical applications. New radiolabeled RGD peptide probes were synthesized via a molecular design approach, with two labeling sites for metal and halogen. These probes were evaluated in biodistribution experiments using tumor-bearing mice. [67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]4), Ga-DOTA-[125I]c[RGDf(4-I)K] ([125I]4), and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]7) showed similar biodistribution, with high and equivalent accumulation in tumors. These results indicate the usefulness of these probes in radiotheranostics with multiradionuclides, such as a radiometal and a radiohalogen, and they could contribute to a personalized medicine regimen.


Subject(s)
Neoplasms/diagnostic imaging , Oligopeptides/administration & dosage , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Animals , Astatine , Cell Line, Tumor , Drug Stability , Gallium Radioisotopes , Humans , Mice , Neoplasms/pathology , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
7.
Circ J ; 85(11): 2102-2108, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34176868

ABSTRACT

BACKGROUND: This study chronologically evaluated the expression of the intensity and distribution of the sigma-1 receptor (σ1R) demonstrated by radiolabeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (OI5V) in a rat model of myocardial ischemia and reperfusion.Methods and Results:The left coronary artery was occluded for 30 min, followed by reperfusion. Dual-tracer autoradiography with 125I-OI5V and 99 mTc-MIBI was performed to assess the spatiotemporal changes in 125I-OI5V uptake (n=5-6). Significant and peaked 125I-OI5V uptake in the ischemic area was observed at 3 days after reperfusion, and the 125I-OI5V uptake ratio of ischemic area to normally perfused left ventricular area decreased gradually from 3 to 28 days (mean value±SD; 0.90±0.12 at 1 day, 1.89±0.19 at 3 days, 1.52±0.17 at 7 days, 1.34±0.13 at 14 days, and 1.16±0.14 at 28 days, respectively). Triple-tracer autoradiography with 125I-OI5V, 99 mTc-MIBI, and 201TlCl was performed to evaluate 125I-OI5V uptake in the ischemic area in relation to the residual perfusion at 7 days (n=4). The 125I-OI5V uptake ratio of the non-salvaged area was higher compared to that of the salvaged area in the ischemic area. 123I-OI5V and 99 mTc-MIBI SPECT/CT was performed 3 days after reperfusion (n=3), and the in vivo images showed clear uptake of 123I-OI5V in the perfusion defect area. CONCLUSIONS: The present study confirmed the spatiotemporal expression pattern of σ1R expression. Non-invasive σ1R imaging with 123I or 125I-OI5V was feasible to monitor the expression of σ1R after myocardial ischemia and reperfusion.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Animals , Cyclopentanes , Humans , Iodine Radioisotopes , Myocardial Ischemia/diagnostic imaging , Myocardial Reperfusion , Myocardium , Radiopharmaceuticals , Rats , Receptors, sigma , Reperfusion , Technetium Tc 99m Sestamibi , Sigma-1 Receptor
8.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809064

ABSTRACT

Activating double mutations L858R/T790M in the epidermal growth factor receptor (EGFR) region are often observed as the cause of resistance to tyrosine kinase inhibitors (TKIs). Third-generation EGFR-TKIs, such as osimertinib and rociletinib (CO-1686), was developed to target such resistance mutations. The detection of activating L858R/T790M mutations is necessary to select sensitive patients for therapy. Hence, we aimed to develop novel radiobromine-labeled CO-1686 as a positron emission tomography (PET) imaging probe for detecting EGFR L858R/T790M mutations. Nonradioactive brominated-CO1686 (BrCO1686) was synthesized by the condensation of N-(3-[{2-chloro-5-(trifluoromethyl)pyrimidin-4-yl}amino]-5-bromophenyl) acrylamide with the corresponding substituted 1-(4-[4-amino-3-methoxyphenyl]piperazine-1-yl)ethan-1-one. The radiobrominated [77Br]BrCO1686 was prepared through bromodestannylation of the corresponding tributylstannylated precursor with [77Br]bromide and N-chlorosuccinimide. Although we aimed to provide a novel PET imaging probe, 77Br was used as an alternative radionuclide for 76Br. We fundamentally evaluated the potency of [77Br]BrCO1686 as a molecular probe for detecting EGFR L858R/T790M using human non-small-cell lung cancer (NSCLC) cell lines: H1975 (EGFR L858R/T790M), H3255 (EGFR L858R), and H441 (wild-type EGFR). The BrCO1686 showed high cytotoxicity toward H1975 (IC50 0.18 ± 0.06 µM) comparable to that of CO-1686 (IC50 0.14 ± 0.05 µM). In cell uptake experiments, the level of accumulation of [77Br]BrCO1686 in H1975 was significantly higher than those in H3255 and H441 upon 4 h of incubation. The radioactivity of [77Br]BrCO1686 (136.3% dose/mg protein) was significantly reduced to 56.9% dose/mg protein by the pretreatment with an excess CO-1686. These results indicate that the binding site of the radiotracers should be identical to that of CO-1686. The in vivo accumulation of radioactivity of [77Br]BrCO1686 in H1975 tumor (4.51 ± 0.17) was higher than that in H441 tumor (3.71 ± 0.13) 1 h postinjection. Our results suggested that [77Br]BrCO1686 has specificity toward NSCLC cells with double mutations EGFR L858R/T790M compared to those in EGFR L858R and wild-type EGFR. However, the in vivo accumulation of radioactivity in the targeted tumor needs to be optimized by structural modification.

9.
Ann Nucl Med ; 35(2): 167-175, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33417152

ABSTRACT

INTRODUCTION: We investigated the characteristics of radio-iodinated 2-[4-(2-iodophenyl)piperidino]cyclopentanol (OI5V) as a single photon emission computed tomography (SPECT) ligand for mapping sigma-1 receptor (σ-1R), which plays an important role in stress remission in many organs. METHODS: OI5V was synthesized from o-bromobenzaldehyde in three steps. OI5V was evaluated for its affinity to VAChT, σ-1 and σ-2 receptor by in vitro competitive binding assays using rat tissues and radioligands, [3H]vesamicol, ( +)-[3H]pentazocine and [3H]DTG, respectively. [125/123I]OI5V was prepared from o-trimethylstannyl-cyclopentanevesamicol (OT5V) by the iododestannylation reaction under no-carrier-added conditions. In vivo biodistribution study of [125I]OI5V in blood, brain regions and major organs of rats was performed at 2, 10, 30 and 60 min post-injection. In vivo blocking study and ex vivo autoradiography were performed to assess the binding selectivity of [125I]OI5V for σ-1 receptor. SPECT-CT imaging study was performed using [123I]OI5V. RESULTS: OI5V demonstrated high selective binding affinity for σ-1R in vitro. In the biodistribution study, the blood-brain barrier (BBB) permeability of [125I]OI5V was high and the accumulation of [125I]OI5V in the rat cortex at 2 min post-injection exceeded 2.00%ID/g. In the in vivo blocking study, the accumulation of [125I]OI5V in the brain was significantly blocked by co-administration of 0.5 µmol of SA4503 and 1.0 µmol of pentazocine. Ex vivo autoradiography revealed that the regional brain accumulation of [125I]OI5V was similar to σ-1R-rich regions of the rat brain. SPECT images of [123I]OI5V in the rat brain reflected the distribution of sigma receptors in the brain. CONCLUSIONS: This study confirmed that [125/123I]OI5V selectively binds σ-1R in the rat brain in vivo. [123I]OI5V was suggested to be useful as a σ-1R ligand for SPECT.


Subject(s)
Cyclopentanes/chemical synthesis , Cyclopentanes/pharmacology , Iodine Radioisotopes/chemistry , Receptors, sigma/analysis , Tomography, Emission-Computed, Single-Photon/methods , Animals , Autoradiography , Blood-Brain Barrier/metabolism , Brain , Humans , Ligands , Liver , Male , Pentazocine/chemistry , Piperazines/chemistry , Piperidines/chemistry , Radiopharmaceuticals/chemistry , Rats, Sprague-Dawley , Staining and Labeling , Structure-Activity Relationship , Tissue Distribution , Sigma-1 Receptor
10.
Ann Nucl Med ; 35(2): 253-259, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33389666

ABSTRACT

OBJECTIVE: Colchicine has been used as an anti-inflammatory agent and may be cardioprotective after acute myocardial infarction (AMI). We investigated how colchicine administration after AMI affects the myocardial inflammatory response using 14C-methionine and subsequent ventricular remodeling using single-photon emission computed tomography (SPECT) in a rat model of AMI. METHODS: The left coronary artery (LCA) was occluded for 30 min followed by reperfusion. 14C-methionine was injected at 20 min before sacrifice. The LCA was re-occluded at 1 min before sacrifice and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) was injected. Colchicine was administered intraperitoneally from day 1 to the day before 14C-methionine injection. Dual-tracer autoradiography of the left ventricular short-axis slices was performed. The methionine uptake ratio in an ischemic area was calculated. 99mTc-MIBI gated SPECT assessed end-diastolic volume (EDV), end-systolic volume (ESV) and left ventricular ejection fraction (LVEF). On Cluster of Differentiation 68 with 4',6-diamidino-2-phenylindole (CD68/DAPI) staining the positive myocardial cell percentage in an ischemic area was calculated. RESULTS: In control rats, 14C-methionine uptake ratios on day 3 and 7 were 1.87 ± 0.15 and 1.39 ± 0.12, respectively. With colchicine, the uptake was reduced on days 3 (1.56 ± 0.26, p = 0.042) and 7 (1.23 ± 0.10, p = 0.030). Colchicine treated rats showed smaller EDV, ESV, and higher LVEF compared with control rats. At 8 weeks, those in control rats were 864 ± 115 µL, 620 ± 100 µL, 28.4 ± 2.5%, and in colchicine rats 665 ± 75 µL, 390 ± 97 µL, 42.2 ± 8.5% (p = 0.012, 0.0061, 0.0083), respectively. In control rats, CD68/DAPI positive myocardial cell percentages on days 3 and 7 were 38.4 ± 1.9% and 24.0 ± 2.4%, respectively. With colchicine, the percentages were reduced significantly on both days 3 (31.5 ± 2.0%, p < 0.0001) and 7 (12.0 ± 1.6%, p < 0.0001) as compared with the control. CONCLUSIONS: Short-term colchicine treatment after AMI attenuated the post-AMI inflammatory response and subsequent ventricular remodeling and dysfunction. 14C-methionine imaging and gated 99mTc-MIBI SPECT would be feasible to monitor the effectiveness of anti-inflammatory therapy and left ventricular function.


Subject(s)
Carbon Radioisotopes/chemistry , Colchicine/pharmacology , Methionine/chemistry , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/radiotherapy , Radiopharmaceuticals/pharmacology , Ventricular Remodeling/drug effects , Animals , Colchicine/adverse effects , Colchicine/therapeutic use , Heart Ventricles/radiation effects , Humans , Male , Myocardium , Radiopharmaceuticals/adverse effects , Radiopharmaceuticals/therapeutic use , Rats , Rats, Wistar , Risk Assessment , Stroke Volume , Technetium/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Ventricular Function, Left/radiation effects
11.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374773

ABSTRACT

The purpose of this study is to develop peptide-based platelet-derived growth factor receptor ß (PDGFRß) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and ß-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRß positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging.


Subject(s)
Gallium Radioisotopes/chemistry , Peptide Fragments/pharmacokinetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radiopharmaceuticals/chemistry , Receptor, Platelet-Derived Growth Factor beta/metabolism , Animals , Apoptosis , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Peptide Fragments/chemistry , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
J Immunother Cancer ; 8(2)2020 11.
Article in English | MEDLINE | ID: mdl-33188035

ABSTRACT

BACKGROUND: Pancreatic ductular adenocarcinoma (PDAC) is among the most dreadful of malignancies, in part due to the lack of efficacious chemotherapy. Immune checkpoint inhibitors, including anti-programmed cell death 1 (anti-PD-1) antibodies, are novel promising forms of systemic immunotherapy. In the current study, we assessed whether gemcitabine (GEM) combined with anti-PD-1 antibody treatment was efficacious as immunochemotherapy for advanced PDAC using a murine model of liver metastasis. METHODS: The murine model of PDAC liver metastasis was established by intrasplenically injecting the murine pancreatic cancer cell line PAN02 into immunocompetent C57BL/6J mice. The mice were treated with an anti-PD-1 antibody, GEM, or a combination of GEM plus anti-PD-1 antibody, and compared with no treatment (control); liver metastases, immune cell infiltration, gene expression, immune cell response phenotypes, and overall survival were investigated. RESULTS: In the metastatic tumor tissues of mice treated with GEM plus anti-PD-1 antibody, we observed the increased infiltration of Th1 lymphocytes and M1 macrophages. Gene expression profile analysis of peripheral blood cells obtained from mice treated with GEM plus anti-PD-1 antibody clearly highlighted T cell and innate immune signaling pathways. Survival of PDAC liver metastasis mice was significantly prolonged by the combination therapy (median survival, 66 days) when compared with that of GEM alone treatment (median survival, 56 days). Expanded lymphocytes, which were isolated from the splenocytes of PDAC liver metastasis mice treated with GEM plus anti-PD-1 antibody, had an increased number of M1 macrophages. CONCLUSION: The combination of anti-PD-1 antibody immunotherapy with GEM was beneficial to treat a murine model of PDAC liver metastasis by enhancing the immune response mediated by Th1 lymphocytes and M1 macrophages and was associated with CD8+ T cells.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deoxycytidine/analogs & derivatives , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/secondary , Macrophages/drug effects , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/pharmacology , Mice , Neoplasm Metastasis , Tumor Microenvironment , Gemcitabine , Pancreatic Neoplasms
13.
Sci Rep ; 10(1): 13260, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764719

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that causes skeletal muscle insulin resistance. The circulating levels of LECT2 are a possible biomarker that can predict weight cycling because they reflect liver fat and precede the onset of weight loss or gain. Herein, to clarify the dynamics of this rapid change in serum LECT2 levels, we investigated the in vivo kinetics of LECT2, including its plasma half-life and tissue distribution, by injecting 125I-labelled LECT2 into ICR mice and radioactivity tracing. The injected LECT2 was eliminated from the bloodstream within 10 min (approximate half-life, 5 min). In the kidneys, the radioactivity accumulated within 10 min after injection and declined thereafter. Conversely, the radioactivity in urine increased after 30 min of injection, indicating that LECT2 is mainly excreted by the kidneys into the urine. Finally, LECT2 accumulated in the skeletal muscle and liver until 30 min and 2 min after injection, respectively. LECT2 accumulation was not observed in the adipose tissue. These findings are in agreement with LECT2 action on the skeletal muscle. The present study indicates that LECT2 is a rapid-turnover protein, which renders the circulating level of LECT2 a useful rapid-response biomarker to predict body weight alterations.


Subject(s)
Biomarkers/blood , Intercellular Signaling Peptides and Proteins/blood , Iodine Radioisotopes/chemistry , Animals , Biomarkers/chemistry , Half-Life , Intercellular Signaling Peptides and Proteins/chemistry , Kidney/metabolism , Liver/chemistry , Male , Mice , Mice, Inbred ICR , Muscle, Skeletal/metabolism , Tissue Distribution , Urine/chemistry
14.
Molecules ; 25(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599930

ABSTRACT

Rociletinib (CO-1686), a 2,4-diaminopyrimidine derivative, is a highly potent tyrosine kinase inhibitor (TKI) that acts on epidermal growth factor receptor (EGFR) with L858R/T790M mutations. We supposed radioiodinated CO-1686 would function as a useful tool for monitoring EGFR L858R/T790M mutations. To aid in patient selection before therapy with EGFR-TKIs, this study aimed to develop a 125I-labeled derivative of CO-1686, N-{3-[(2-{[4-(4-acetylpiperazin-1-yl)-2-methoxyphenyl]amino}-5-(trifluoromethyl)pyrimidine-4-yl] amino}-5-([125I]iodophenyl)acrylamide ([125I]ICO1686) and evaluate its selectivity toward EGFR L858R/T790M. Radiosynthesis was performed by iododestannylation of the corresponding tributylstannyl precursor with [125I]NaI and N-chlorosuccinimide. The selectivity of the tracer for detecting EGFR L858R/T790M was evaluated using three relevant non-small cell lung cancer (NSCLC) cell lines-H1975, H3255 and H441 overexpressing the dual mutation EGFR L858R/T790M, active mutant EGFR L858R and wild-type EGFR, respectively. The nonradioactive ICO1686 and the precursor compound were successfully synthesized. A novel radiolabeled probe, [125I]ICO1686, was prepared with high radiochemical yield (77%) and purity (>99%). ICO1686 exhibited high cytotoxicity toward H1975 (IC50 0.20 ± 0.05 µM) and H3255 (IC50 0.50 ± 0.21 µM), which is comparable to that of CO-1686. In contrast, the cytotoxicity of ICO1686 toward H441 was 10-fold lower than that toward H1975. In the cell uptake study, the radioactivity uptake of [125I]ICO1686 in H1975 was 101.52% dose/mg, whereas the uptakes in H3255 and H441 were 33.52 and 8.95% dose/mg, respectively. The uptake of [125I]ICO1686 in H1975 was greatly reduced to 45.61% dose/mg protein by treatment with excess CO-1686. In vivo biodistribution study of the radiotracer found that its accumulation in H1975 tumor (1.77 ± 0.43% ID/g) was comparable to that in H3255 tumor (1.63 ± 0.23% ID/g) and the accumulation in H1975 tumor was not reduced by pretreatment with an excess dose of CO-1686. Although this radiotracer exhibited highly specific in vitro uptake in target cancer cells, structural modification is required to improve in vivo biodistribution.


Subject(s)
Acrylamides/chemical synthesis , Acrylamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Iodine Radioisotopes/chemistry , Lung Neoplasms/drug therapy , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Acrylamides/pharmacokinetics , Animals , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Stability , ErbB Receptors/genetics , Humans , Isotope Labeling , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Male , Mice, Inbred Strains , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Xenograft Model Antitumor Assays
15.
Sci Rep ; 10(1): 11917, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32681007

ABSTRACT

[223Ra]RaCl2 is the first alpha-particle emitting radiopharmaceutical to be used for castration-resistant prostate cancer patients with bone metastases because of its excellent therapeutic effects. [223Ra]RaCl2 is excreted via the intestine into feces, and some is absorbed from the intestine into the blood, which may be undesirable in terms of the exposure to radiation. Recently, we showed that a complex of myo-inositol-hexakisphosphate (InsP6) with zinc is a useful decorporation agent against radiostrontium. In this study, we hypothesized that Zn-InsP6 could bind to not only strontium but also to radium, and could inhibit the absorption of radium from the intestine. In in vitro binding experiments, Zn-InsP6 showed a high binding affinity for radium. In in vivo biodistribution experiments by intravenous injection of [223Ra]RaCl2 after treatment of Zn-InsP6, mice treated with Zn-InsP6 showed significantly lower bone accumulation of radioactivity (34.82 ± 1.83%Dose/g) than the mice in the non-treatment control group (40.30 ± 2.78%Dose/g) at 48 h postinjection. These results indicate that Zn-InsP6 bound radium in the intestine and inhibited the absorption of radium into the blood. Therefore, the insoluble Zn-InsP6 complex has high potential to decrease the side effects of [223Ra]RaCl2.


Subject(s)
Absorption, Radiation , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Intestines/radiation effects , Radium/administration & dosage , Radium/therapeutic use , Administration, Oral , Animals , Cations , Chlorella/metabolism , Hydrogen-Ion Concentration , Male , Mice , Phytic Acid/chemistry , Phytic Acid/metabolism , Radioactivity , Radioisotopes/administration & dosage , Radioisotopes/therapeutic use , Tissue Distribution , Zinc/pharmacology
16.
Synapse ; 74(11): e22176, 2020 11.
Article in English | MEDLINE | ID: mdl-32500935

ABSTRACT

To develop a PET imaging agent to visualize brain cholinergic neurons and synaptic changes caused by Alzheimer's disease, (-)- and (+)-o-[11 C]methyl-trans-decalinvesamicol ([11 C]OMDV) were isolated and investigated for differences in not only their binding affinity and selectivity to vesicular acetylcholine transporter (VAChT), but also their in vivo activities. [11 C]OMDV has a high binding affinity for VAChT both in vitro and in vivo. Racemic OMDV and o-trimethylstannyl-trans-decalinvesamicol (OTDV), which are precursors for synthesis of [11 C]OMDV, were separated into (-)-optical isomers ((-)-OMDV and (-)-OTDV) and (+)-optical isomers ((+)-OMDV and (+)-OTDV) by HPLC. In the in vitro binding assay, (-)-OMDV(7.2 nM) showed eight times higher binding affinity (Ki) to VAChT than that of (+)-OMDV(57.5 nM). In the biodistribution study, the blood-brain barrier permeability of both enantiomers ((-)-[11 C]OMDV and (+)-[11 C]OMDV) was similarly high (about 1.0%ID/g) at 2 min post-injection. However, (+)-[11 C]OMDV clearance from the brain was faster than (-)-[11 C]OMDV. In the in vivo blocking study, accumulation of (-)-[11 C]OMDV in the cortex was markedly decreased (approximately 30% of control) by coadministration of vesamicol, and brain uptake of (-)-[11 C]OMDV was not significantly altered by coadministration of (+)-pentazocine or (+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP). PET-CT imaging revealed inhibition of the rat brain uptake of (-)-[11 C]OMDV by coadministration of vesamicol. In conclusion, (-)-[11 C]OMDV, which is an enantiomer of OMDV, selectively binds to VAChT with high affinity in the rat brain in vivo. (-)-[11 C]OMDV may be utilized as a potential PET ligand for studying presynaptic cholinergic neurons in the brain.


Subject(s)
Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Liver/diagnostic imaging , Liver/metabolism , Piperidines/chemistry , Protein Binding , Radiopharmaceuticals/chemistry , Rats , Tissue Distribution
17.
Sci Rep ; 10(1): 160, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932657

ABSTRACT

Few studies have evaluated myocardial perfusion and ventricular function in normal, growing rats. We, therefore, evaluated serial changes in cardiac perfusion and function during the growth of normal rats using single photon emission computed tomography (SPECT) with technetium (99mTc)-sestamibi. Gated SPECT was serially performed in six normal rats. The left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and ejection fraction (EF) were calculated with Quantitative Gated SPECT software. The perfusion distribution was calculated as the percentage uptake of each of the 17 segments using Quantitative Perfusion SPECT software. As expected, the body weight (BW) of the rats increased with growth, but their heart rates (HR) did not change over time. EF decreased very slowly over time and showed a negative correlation with BW. EDV, ESV and SV showed strong positive correlations with BW. There were no significant differences in the percentage segmental uptake in 13 of the 17 segments during growth, except for three basal and one apical segments. Therefore, a single normal database could be applied for the evaluation of perfusion abnormalities in rats of at least 8 to 28 weeks old.


Subject(s)
Algorithms , Heart Ventricles/physiopathology , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray Computed/methods , Ventricular Function , Animals , Coronary Circulation , Male , Perfusion , Radiopharmaceuticals , Rats , Rats, Wistar , Stroke Volume
18.
Circ J ; 83(12): 2520-2526, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31619593

ABSTRACT

BACKGROUND: Methionine uptake after myocardial infarction has been proven to reflect myocardial inflammation. The effect of postconditioning on the post-infarction inflammatory process, however, remains to be elucidated.Methods and Results:In control (n=22) and postconditioning rats (n=23), the left coronary artery was occluded for 30 min, followed by reperfusion for 1, 3, 7, and 14 days. Postconditioning was performed immediately following the reperfusion. 14C-methinine (0.74 MBq) and 201Tl (14.8 MBq) were injected 20 and 10 min prior to sacrifice, respectively. One minute before sacrifice, 150-180 MBq of 99 mTc-MIBI was injected immediately following the re-occlusion of the left coronary artery to verify the area at risk, and left ventricular triple-tracer autoradiography was performed. To examine the ventricular remodeling, echocardiography was performed 2 months after reperfusion in both groups (n=6 each). In the control rats, the methionine uptake ratios on days 1, 3, 7, and 14 were 0.74±0.12, 1.85±0.16, 1.48±0.10, 1.25±0.04, respectively. With postconditioning, methionine uptake was similar on day 3 (1.90±0.21), but was lower on day 7 (1.23±0.22, P<0.05) and day 14 (1.08±0.09, P<0.005). Echocardiography revealed that postconditioning reduced the ventricular end-diastolic (0.97±0.16 to 0.78±0.12 cm, P<0.05) and systolic (0.85±0.21 to 0.55±0.23 cm, P<0.05) dimensions and improved ventricular percentage fractional shortening (12±6.2 to 29±12 %, P=0.01). CONCLUSIONS: 14C-methinine imaging revealed that postconditioning accelerated resolution of inflammation and attenuated ventricular remodeling.


Subject(s)
Carbon Radioisotopes/administration & dosage , Ischemic Postconditioning , Methionine/administration & dosage , Molecular Imaging , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocarditis/prevention & control , Radiopharmaceuticals/administration & dosage , Animals , Autoradiography , Disease Models, Animal , Feasibility Studies , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/physiopathology , Myocarditis/diagnostic imaging , Myocarditis/physiopathology , Rats, Wistar , Technetium Tc 99m Sestamibi/administration & dosage , Thallium Radioisotopes/administration & dosage , Time Factors , Ventricular Function, Left , Ventricular Remodeling
19.
Bioorg Med Chem ; 27(10): 1990-1996, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30975500

ABSTRACT

Sigma-1 receptor imaging probes for determining the expression levels are desirable for diagnoses of various diseases and companion diagnoses of therapeutic agents targeting the sigma-1 receptor. In this study, we aimed to develop probes with higher affinity for the sigma-1 receptor. For this purpose, we synthesized and evaluated compounds, namely, vesamicol derivatives, in which alkyl chains of varying chain length were introduced between a piperazine ring and a benzene ring. The binding affinity of the vesamicol derivatives for the sigma-1 receptor tended to increase depending on the length of the alkyl chain between the benzene ring and the piperazine ring. The sigma-1 receptor of 2-(4-(3-phenylpropyl)piperazin-1-yl)cyclohexan-1-ol (5) (Ki = 5.8 nM) exhibited the highest binding affinity; therefore, we introduced radioiodine into the benzene ring in 5. The radioiodine labeled probe [125I]2-(4-(3-(4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]10) showed high accumulation in the sigma-1 receptor expressing DU-145 cells both in vitro and in vivo. Co-injection of [125I]10 with an excess level of a sigma receptor ligand, haloperidol, resulted in a significant decrease in the tumor accumulation in vitro and in vivo, indicating sigma receptor-mediated tumor uptake. These results provide useful information for developing sigma-1 receptor imaging probes.


Subject(s)
Aza Compounds/chemistry , Piperidines/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, sigma/metabolism , Animals , Cell Line, Tumor , Humans , Iodine Radioisotopes/chemistry , Isotope Labeling , Male , Mice , Mice, Nude , Neoplasms/diagnostic imaging , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Receptors, sigma/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Transplantation, Heterologous , Sigma-1 Receptor
20.
Ann Nucl Med ; 33(4): 244-251, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30604401

ABSTRACT

OBJECTIVE: Somatostatin receptors are highly expressed in neuroendocrine tumors, and many radiolabeled somatostatin analogs for diagnosis and treatment have been developed. To simultaneously detect not only primary cancer but also bone metastases, this study aimed to develop a positron emission tomography probe using generator-produced nuclide Gallium-68 (T1/2 = 68 min), in which a carrier for primary cancer, a carrier for bone metastases lesions, and a stable gallium complex are introduced into the one molecule. Based on this strategy, the somatostatin receptor-targeted peptide, [Tyr3]-octreotate (TATE), aspartic acid peptide (Dn) with high binding affinity for hydroxyapatite, and Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a stable gallium complex were selected. The novel complexes, Ga-DOTA-Dn-TATE (n = 0, 2, 5, 8, or 11), were designed, synthesized, and evaluated. The radiogallium complexes were prepared using the easy-to-handle radioisotope 67Ga due to relatively long half-life. METHODS: The radiogallium complex precursor DOTA-Dn-TATE was synthesized by the Fmoc-based solid-phase method and by the air oxidation method to form the disulfide bond. [67Ga]Ga-DOTA-Dn-TATE was synthesized by reacting DOTA-Dn-TATE and 67Ga. Hydroxyapatite binding assays, in vitro cellular uptake experiments in AR42J tumor cells, in biodistribution experiments in AR42J tumor-bearing mice, were performed using [67Ga]Ga-DOTA-Dn-TATE. RESULTS: The radiochemical purities of [67Ga]Ga-DOTA-Dn-TATE were > 96.0%. In in vitro and in vivo experiments, [67Ga]Ga-DOTA-D11-TATE had a high affinity for hydroxyapatite and highly accumulated in bone. However, the uptake of [67Ga]Ga-DOTA-D11-TATE into somatostatin receptor-positive AR42J cells was lower than that of [67Ga]Ga-DOTA-TATE, and the accumulation of [67Ga]Ga-DOTA-D11-TATE in tumor was significantly low. CONCLUSION: Ga-DOTA-D11-TATE may not be recognized by somatostatin receptor by the introduction of D11, and the charge adjustment may be important for somatostatin receptor-positive cell uptake.


Subject(s)
Aspartic Acid/chemistry , Gallium Radioisotopes , Peptides, Cyclic/chemistry , Animals , Cell Line, Tumor , Female , Heterocyclic Compounds, 1-Ring/chemistry , Isotope Labeling , Mice , Mice, Inbred BALB C , Peptides, Cyclic/pharmacokinetics , Positron-Emission Tomography , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...