Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(34): e202400618, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38570328

ABSTRACT

Sulfur-coordinated coordination polymers (S-CPs) have unique optoelectrical properties that originate from infinite M-S bond networks. In this study, we synthesized and characterized two polymorphs of a two-dimensional (2D) Pb(II) S-CP with a formula of [Pb(tzdt)(OAc)] (Htzdt=1,3-thiazolidine-2-thione, OAc=acetate). Our findings revealed that the thermodynamic product (KGF-26) possesses quasi-2D (-Pb-S-)n layers with weak nonbonded Pb-S bonds, whereas the kinetic product (KGF-27) has intrinsic 2D (-Pb-S-)n layers with Pb-S bonds. The results of time-resolved microwave conductivity measurements and first-principles calculations confirmed that KGF-27 exhibits higher photoconductivity than KGF-26, which establishes that the inorganic (-Pb-S-)n networks with Pb-S bonds are crucial for achieving high photoconductivity. This is the first experimental demonstration of the impact of the (-M-S-)n networks in S-CPs on photoconductivity through the comparison of crystal polymorphisms.

2.
Angew Chem Int Ed Engl ; 60(43): 23217-23224, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34431599

ABSTRACT

Coordination polymers (CPs) with infinite metal-sulfur bond networks have unique electrical conductivities and optical properties. However, the development of new (-M-S-)n -structured CPs is hindered by difficulties with their crystallization. Herein, we describe the use of machine learning to optimize the synthesis of trithiocyanuric acid (H3 ttc)-based semiconductive CPs with infinite Ag-S bond networks, report three CP crystal structures, and reveal that isomer selectivity is mainly determined by proton concentration in the reaction medium. One of the CPs, [Ag2 Httc]n , features a 3D-extended infinite Ag-S bond network with 1D columns of stacked triazine rings, which, according to first-principle calculations, provide separate paths for holes and electrons. Time-resolved microwave conductivity experiments show that [Ag2 Httc]n is highly photoconductive (φΣµmax =1.6×10-4  cm2 V-1 s-1 ). Thus, our method promotes the discovery of novel CPs with selective topologies that are difficult to crystallize.

SELECTION OF CITATIONS
SEARCH DETAIL
...