Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 97: 245-249, 2020 12.
Article in English | MEDLINE | ID: mdl-33035552

ABSTRACT

It has been known that different protocols are used for embryo preservation at different stages due to different sensitivity to the physical and physiological stress caused by vitrification. In this study, we developed a common vitrification protocol using carboxlated ε-poly-l-lysine (COOH-PLL), a new cryoprotective agent for the vitrification of mouse embryos at different stages. The IVF-derived Crl:CD1(ICR) x B6D2F1/Crl pronuclear, 2-cell, 4-cell, and 8-cell, morula and blastocyst stage embryos were vitrified with 15% (v/v) ethylene glycol (EG) and 10% (w/v) COOH-PLL (E15P15) or 15% (v/v) EG and 15% (v/v) dimethyl sulfoxide (E15D15) using the minimal volume cooling method. The survival of vitrified embryos from pronuclear to blastocyst stages was equivalent between E15P15 and E15D15 groups. However, the rate of development to blastocysts was significantly lower in E15P15 than E15D15. The rates of survival and development to blastocysts were dramatically improved by a slight modification of EG and COOH-PLL concentrations (E20P10). After transferring 17 (E20P10) and 15 (E15D15) vitrified/warmed blastocysts, 8 and 7 pups were obtained (47.1% and 46.7%, respectively). Taken together, these results indicate that our vitrification protocol is appropriate for the vitrification of mouse embryos at different stages.


Subject(s)
Cryoprotective Agents , Vitrification , Animals , Blastocyst , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Ethylene Glycol , Mice , Mice, Inbred ICR , Polylysine/pharmacology
2.
Cryobiology ; 68(2): 200-4, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24491796

ABSTRACT

Transgenic animals are generally produced by microinjection of exogeneous DNA into embryos at the pronuclear (PN) stage. PN embryos also can be used for knockout animals because artificial nucleases such as zinc-finger nuclease or transcription activator-like effector nuclease are now available for modification of the targeted gene. If the embryos can be vitrified with multiple rounds, the remaining embryos without microinjection can be reused. In this study, we examined the developmental competence of repetitively vitrified mouse embryos at the PN stage using Cryotop. It was also examined whether a new cryoprotective agent (CPA), carboxylated ε-poly-l-lysine (COOH-PLL), is available for vitrification of mouse embryos. PN embryos were vitrified with dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as CPAs. After warming, some embryos were re-vitrified up to three times. The re-vitrification did not affect survival and in vitro developmental ability. PN embryos were also vitrified with COOH-PLL instead of DMSO up to three times. The embryos re-vitrified with COOH-PLL and EG also maintained high survival and developmental ability. However embryos vitrified with COOH-PLL and EG at three times significantly showed higher developmental ability (61.2±3.1%) than those vitrified with DMSO and EG at three times (44.2±2.7%) which was equivalent to that of fresh embryos (70.0±3.6%). Taken together, our results show that re-vitrification of mouse PN embryos did not have a detrimental effect on the in vitro and in vivo development of the embryos. In addition, COOH-PLL is available as a CPA for vitrification of mouse PN embryos.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/pharmacology , Embryo, Mammalian/drug effects , Polylysine/pharmacology , Vitrification/drug effects , Animals , Embryo, Mammalian/embryology , Female , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...