Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
bioRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496542

ABSTRACT

Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis. We show, via the shared prenatal circulation of monozygotic twins, that weak selection conferred by stem cell variation created before birth can reliably yield clonal hematopoiesis later in life. Theory indicates weak selection will lead to dominance given enough time and large enough population sizes. Human hematopoiesis satisfies both these conditions. Stochastic loss of weakly selected variants is naturally prevented by the expansion of stem cell lineages during development. The dominance of stem cell clones created before birth is supported by blood fluctuating CpG methylation patterns that exhibit low correlation between unrelated individuals but are highly correlated between many elderly monozygotic twins. Therefore, clonal hematopoiesis driven by weak selection in later life appears to reflect variation created before birth.

2.
Cancers (Basel) ; 16(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38254748

ABSTRACT

Adaptive therapy, an ecologically inspired approach to cancer treatment, aims to overcome resistance and reduce toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life instead of killing the maximum number of cancer cells. In preparation for a clinical trial, we used endocrine-resistant MCF7 breast cancer to stimulate second-line therapy and tested adaptive therapy using capecitabine, gemcitabine, or their combination in a mouse xenograft model. Dose modulation adaptive therapy with capecitabine alone increased survival time relative to MTD but not statistically significantly (HR = 0.22, 95% CI = 0.043-1.1, p = 0.065). However, when we alternated the drugs in both dose modulation (HR = 0.11, 95% CI = 0.024-0.55, p = 0.007) and intermittent adaptive therapies, the survival time was significantly increased compared to high-dose combination therapy (HR = 0.07, 95% CI = 0.013-0.42, p = 0.003). Overall, the survival time increased with reduced dose for both single drugs (p < 0.01) and combined drugs (p < 0.001), resulting in tumors with fewer proliferation cells (p = 0.0026) and more apoptotic cells (p = 0.045) compared to high-dose therapy. Adaptive therapy favors slower-growing tumors and shows promise in two-drug alternating regimens instead of being combined.

3.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873488

ABSTRACT

Ductal carcinoma in situ (DCIS) and invasive breast cancer share many morphologic, proteomic, and genomic alterations. Yet in contrast to invasive cancer, many DCIS tumors do not progress and may remain indolent over decades. To better understand the heterogenous nature of this disease, we reconstructed the growth dynamics of 18 DCIS tumors based on the geo-spatial distribution of their somatic mutations. The somatic mutation topographies revealed that DCIS is multiclonal and consists of spatially discontinuous subclonal lesions. Here we show that this pattern of spread is consistent with a new 'Comet' model of DCIS tumorigenesis, whereby multiple subclones arise early and nucleate the buds of the growing tumor. The discontinuous, multiclonal growth of the Comet model is analogous to the branching morphogenesis of normal breast development that governs the rapid expansion of the mammary epithelium during puberty. The branching morphogenesis-like dynamics of the proposed Comet model diverges from the canonical model of clonal evolution, and better explains observed genomic spatial data. Importantly, the Comet model allows for the clinically relevant scenario of extensive DCIS spread, without being subjected to the selective pressures of subclone competition that promote the emergence of increasingly invasive phenotypes. As such, the normal cell movement inferred during DCIS growth provides a new explanation for the limited risk of progression in DCIS and adds biologic rationale for ongoing clinical efforts to reduce DCIS overtreatment.

4.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37781632

ABSTRACT

Highly effective cancer therapies often face limitations due to acquired resistance and toxicity. Adaptive therapy, an ecologically inspired approach, seeks to control therapeutic resistance and minimize toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life over maximum cell kill. In preparation for a clinical trial in breast cancer, we used large populations of MCF7 cells to rapidly generate endocrine-resistance breast cancer cell line. We then mimicked second line therapy in ER+ breast cancers by treating the endocrine-resistant MCF7 cells in a mouse xenograft model to test adaptive therapy with capecitabine, gemcitabine, or the combination of those two drugs. Dose-modulation adaptive therapy with capecitabine alone increased survival time relative to MTD, but not statistically significant (HR: 0.22, 95% CI 0.043- 1.1 P = 0.065). However, when we alternated the drugs in both dose modulation (HR = 0.11, 95% CI: 0.024 - 0.55, P = 0.007) and intermittent adaptive therapies significantly increased survival time compared to high dose combination therapy (HR = 0.07, 95% CI: 0.013 - 0.42; P = 0.003). Overall, survival time increased with reduced dose for both single drugs (P < 0.01) and combined drugs (P < 0.001). Adaptive therapy protocols resulted in tumors with lower proportions of proliferating cells (P = 0.0026) and more apoptotic cells (P = 0.045). The results show that Adaptive therapy outperforms high-dose therapy in controlling endocrine-resistant breast cancer, favoring slower-growing tumors, and showing promise in two-drug alternating regimens.

5.
Nature ; 611(7937): 733-743, 2022 11.
Article in English | MEDLINE | ID: mdl-36289335

ABSTRACT

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Subject(s)
Colorectal Neoplasms , Epigenome , Genome, Human , Mutation , Humans , Adenoma/genetics , Adenoma/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin/genetics , Chromatin/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epigenome/genetics , Oncogenes/genetics , Transcription Factors/metabolism , Genome, Human/genetics , Interferons
6.
Nature ; 611(7937): 744-753, 2022 11.
Article in English | MEDLINE | ID: mdl-36289336

ABSTRACT

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Subject(s)
Adaptation, Physiological , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Phenotype , Humans , Adaptation, Physiological/genetics , Clone Cells/metabolism , Clone Cells/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Exome Sequencing , Transcription, Genetic
7.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35998218

ABSTRACT

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Subject(s)
Clonal Evolution , Epidermis , Homeostasis , Keratinocytes , Carcinogenesis/genetics , Clonal Evolution/genetics , Epidermis/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/physiology , Mutation , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics
8.
J Pathol ; 257(4): 501-512, 2022 07.
Article in English | MEDLINE | ID: mdl-35415852

ABSTRACT

The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colon , Neoplasms , Cell Lineage , Humans , Mutation , United Kingdom
9.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35298641

ABSTRACT

Research over the past two decades has made substantial inroads into our understanding of somatic mutations. Recently, these studies have focused on understanding their presence in homeostatic tissue. In parallel, agent-based mechanistic models have emerged as an important tool for understanding somatic mutation in tissue; yet no common methodology currently exists to provide base-pair resolution data for these models. Here, we present Gattaca as the first method for introducing and tracking somatic mutations at the base-pair resolution within agent-based models that typically lack nuclei. With nuclei that incorporate human reference genomes, mutational context, and sequence coverage/error information, Gattaca is able to realistically evolve sequence data, facilitating comparisons between in silico cell tissue modeling with experimental human somatic mutation data. This user-friendly method, incorporated into each in silico cell, allows us to fully capture somatic mutation spectra and evolution.


Subject(s)
Genome, Human , Neoplasms , Clonal Evolution , Humans , Mutation , Neoplasms/genetics
10.
Nat Biotechnol ; 40(5): 720-730, 2022 05.
Article in English | MEDLINE | ID: mdl-34980912

ABSTRACT

Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).


Subject(s)
Adult Stem Cells , DNA Methylation , Adult , Cell Lineage/genetics , Colon/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Humans , Stem Cells
11.
Bioinformatics ; 38(1): 22-29, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34487148

ABSTRACT

MOTIVATION: Conservation is broadly used to identify biologically important (epi)genomic regions. In the case of tumor growth, preferential conservation of DNA methylation can be used to identify areas of particular functional importance to the tumor. However, reliable assessment of methylation conservation based on multiple tissue samples per patient requires the decomposition of methylation variation at multiple levels. RESULTS: We developed a Bayesian hierarchical model that allows for variance decomposition of methylation on three levels: between-patient normal tissue variation, between-patient tumor-effect variation and within-patient tumor variation. We then defined a model-based conservation score to identify loci of reduced within-tumor methylation variation relative to between-patient variation. We fit the model to multi-sample methylation array data from 21 colorectal cancer (CRC) patients using a Monte Carlo Markov Chain algorithm (Stan). Sets of genes implicated in CRC tumorigenesis exhibited preferential conservation, demonstrating the model's ability to identify functionally relevant genes based on methylation conservation. A pathway analysis of preferentially conserved genes implicated several CRC relevant pathways and pathways related to neoantigen presentation and immune evasion. Our findings suggest that preferential methylation conservation may be used to identify novel gene targets that are not consistently mutated in CRC. The flexible structure makes the model amenable to the analysis of more complex multi-sample data structures. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available in the NCBI GEO Database, under accession code GSE166212. The R analysis code is available at https://github.com/kevin-murgas/DNAmethylation-hierarchicalmodel. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Bayes Theorem , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genome , Genomics , Gene Expression Regulation, Neoplastic
12.
PLoS One ; 16(9): e0253250, 2021.
Article in English | MEDLINE | ID: mdl-34520456

ABSTRACT

Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.


Subject(s)
Cell Culture Techniques/methods , DNA Methylation , Genes, Essential , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Regulation , Genetic Drift , Humans
13.
Nat Genet ; 52(7): 642-643, 2020 07.
Article in English | MEDLINE | ID: mdl-32632324
14.
iScience ; 23(7): 101304, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32623333

ABSTRACT

Phylogeography combines ancestry with location and can be translated to intratumor heterogeneity (ITH) to visualize how tumors spread. ITH is common in human tumors, with many genetic and phenotypic differences between regions. The roles of ITH in progression are uncertain because many subclones lack discernable driver mutations. ITH can be visualized by mapping mutations onto microscopic sections, where subclones are directly associated with phenotypes, especially the deeper areas with the more invasive cells that confer worst clinical outcomes. Instead of a stepwise hierarchy where subclones segregate by phenotype with later branching subclones in more invasive areas, multiple subclones share superficial and invasive phenotype and are jigsaw arrayed in vertical columns. Phylogeography shows that both early and late subclones extend from the surface to the invasive front, suggesting that founder cells start with phenotypic plasticity and essentially all the drivers necessary to rapidly grow into large invasive tumors.

15.
Sci Rep ; 10(1): 7275, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350370

ABSTRACT

Because histologic types are subjective and difficult to reproduce between pathologists, tissue morphology often takes a back seat to molecular testing for the selection of breast cancer treatments. This work explores whether a deep-learning algorithm can learn objective histologic H&E features that predict the clinical subtypes of breast cancer, as assessed by immunostaining for estrogen, progesterone, and Her2 receptors (ER/PR/Her2). Translating deep learning to this and related problems in histopathology presents a challenge due to the lack of large, well-annotated data sets, which are typically required for the algorithms to learn statistically significant discriminatory patterns. To overcome this limitation, we introduce the concept of "tissue fingerprints," which leverages large, unannotated datasets in a label-free manner to learn H&E features that can distinguish one patient from another. The hypothesis is that training the algorithm to learn the morphological differences between patients will implicitly teach it about the biologic variation between them. Following this training internship, we used the features the network learned, which we call "fingerprints," to predict ER, PR, and Her2 status in two datasets. Despite the discovery dataset being relatively small by the standards of the machine learning community (n = 939), fingerprints enabled the determination of ER, PR, and Her2 status from whole slide H&E images with 0.89 AUC (ER), 0.81 AUC (PR), and 0.79 AUC (Her2) on a large, independent test set (n = 2531). Tissue fingerprints are concise but meaningful histopathologic image representations that capture biological information and may enable machine learning algorithms that go beyond the traditional ER/PR/Her2 clinical groupings by directly predicting theragnosis.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms , Deep Learning , Image Processing, Computer-Assisted , Progesterone/metabolism , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Tissue Array Analysis , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , Middle Aged
16.
Nat Commun ; 11(1): 1280, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152322

ABSTRACT

Intra-tumoral heterogeneity (ITH) could represent clonal evolution where subclones with greater fitness confer more malignant phenotypes and invasion constitutes an evolutionary bottleneck. Alternatively, ITH could represent branching evolution with invasion of multiple subclones. The two models respectively predict a hierarchy of subclones arranged by phenotype, or multiple subclones with shared phenotypes. We delineate these modes of invasion by merging ancestral, topographic, and phenotypic information from 12 human colorectal tumors (11 carcinomas, 1 adenoma) obtained through saturation microdissection of 325 small tumor regions. The majority of subclones (29/46, 60%) share superficial and invasive phenotypes. Of 11 carcinomas, 9 show evidence of multiclonal invasion, and invasive and metastatic subclones arise early along the ancestral trees. Early multiclonal invasion in the majority of these tumors indicates the expansion of co-evolving subclones with similar malignant potential in absence of late bottlenecks and suggests that barriers to invasion are minimal during colorectal cancer growth.


Subject(s)
Colorectal Neoplasms/pathology , Cell Proliferation , Clone Cells , Colorectal Neoplasms/genetics , Genotype , Humans , Microdissection , Neoplasm Invasiveness , Neoplasm Micrometastasis , Phenotype
17.
JCO Clin Cancer Inform ; 4: 100-107, 2020 02.
Article in English | MEDLINE | ID: mdl-32078366

ABSTRACT

PURPOSE: Different epigenetic configurations allow one genome to develop into multiple cell types. Although the rules governing what epigenetic features confer gene expression are increasingly being understood, much remains uncertain. Here, we used a novel software package, Methcon5, to explore whether the principle of biologic conservation can be used to identify expressed genes. The hypothesis is that epigenetic configurations of important expressed genes will be conserved within a tissue. MATERIALS AND METHODS: We compared the DNA methylation of approximately 850,000 CpG sites between multiple clonal crypts or glands of human colon, small intestine, and endometrium. We performed this analysis using the new software package, Methcon5, which enables detection of regions of high (or low) conservation. RESULTS: We showed that DNA methylation is preferentially conserved at gene-associated CpG sites, particularly in gene promoters (eg, near the transcription start site) or the first exon. Furthermore, higher conservation correlated well with gene expression levels and performed better than promoter DNA methylation levels. Most conserved genes are in canonical housekeeping pathways. CONCLUSION: This study introduces the new software package, Methcon5. In this example application, we showed that epigenetic conservation provides an alternative method for identifying functional genomic regions in human tissues.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genome, Human , Neoplasms/genetics , Promoter Regions, Genetic , Humans , Neoplasms/pathology , Prognosis , Software
18.
BMC Res Notes ; 12(1): 788, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796096

ABSTRACT

OBJECTIVE: Recently, many tumor sequencing studies have inferred and reported on mutational signatures, short nucleotide patterns at which particular somatic base substitutions appear more often. A number of signatures reflect biological processes in the patient and factors associated with cancer risk. Our goal is to infer mutational signatures appearing in colon cancer, a cancer for which environmental risk factors vary by cancer subtype, and compare the signatures to those in adult stem cells from normal colon. We also compare the mutational signatures to others in the literature. RESULTS: We apply a probabilistic mutation signature model to somatic mutations previously reported for six adult normal colon stem cells and 431 colon adenocarcinomas. We infer six mutational signatures in colon cancer, four being specific to tumors with hypermutation. Just two signatures explained the majority of mutations in the small number of normal aging colon samples. All six signatures are independently identified in a series of 295 Chinese colorectal cancers.


Subject(s)
Adenocarcinoma/genetics , Colonic Neoplasms/genetics , Mutation , Adult Stem Cells , Colon/cytology , Colon/pathology , Humans , Models, Genetic
19.
PeerJ ; 7: e7557, 2019.
Article in English | MEDLINE | ID: mdl-31523512

ABSTRACT

We propose a hierarchical latent Dirichlet allocation model (HiLDA) for characterizing somatic mutation data in cancer. The method allows us to infer mutational patterns and their relative frequencies in a set of tumor mutational catalogs and to compare the estimated frequencies between tumor sets. We apply our method to two datasets, one containing somatic mutations in colon cancer by the time of occurrence, before or after tumor initiation, and the second containing somatic mutations in esophageal cancer by sex, age, smoking status, and tumor site. In colon cancer, the relative frequencies of mutational patterns were found significantly associated with the time of occurrence of mutations. In esophageal cancer, the relative frequencies were significantly associated with the tumor site. Our novel method provides higher statistical power for detecting differences in mutational signatures.

20.
Science ; 365(6452): 440-441, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31371596
SELECTION OF CITATIONS
SEARCH DETAIL
...