Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(21): 4044-4057, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36069976

ABSTRACT

Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE: A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.


Subject(s)
Glioblastoma , Humans , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Vaccinia virus , Phosphorylation , Protein Serine-Threonine Kinases
2.
AAPS J ; 20(3): 65, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691672

ABSTRACT

PEGylation is a modification commonly used to increase the half-life of therapeutic proteins. The strategy for immunogenicity testing of these compounds should include methods to detect both anti-protein and anti-PEG antibodies. We previously reported a method for the detection of anti-PEG antibodies using ProterixBio's (formerly BioScale) acoustic membrane microparticle (AMMP) technology. Our initial method development work showed the assay was capable of detecting antibodies in human serum with a sensitivity of 1 µg/mL with good reproducibility (CV < 7%). Since the publication of this initial paper, additional experimentation was performed in an effort to validate the assay for support of clinical sample analysis. This additional data indicate that the method has high variability (CV% > 20) and is unsuitable to support clinical sample analysis.


Subject(s)
Antibodies/immunology , Enzyme-Linked Immunosorbent Assay/methods , Polyethylene Glycols/metabolism , Antibodies/blood , Chemistry, Pharmaceutical/methods , Humans , Limit of Detection , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...