Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 36(2): 201-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21407171

ABSTRACT

OBJECTIVE: The SH3-domain GRB2-like (endophilin)-interacting protein 1 (SGIP1) gene has been shown to be differentially expressed in the hypothalamus of lean versus obese Israeli sand rats (Psammomys obesus), and is suspected of having a role in regulating food intake. The purpose of this study was to assess the role of genetic variation in SGIP1 in human disease. SUBJECTS: We performed single-nucleotide polymorphism (SNP) genotyping in a large family pedigree cohort from the island of Mauritius. The Mauritius Family Study (MFS) consists of 400 individuals from 24 Indo-Mauritian families recruited from the genetically homogeneous population of Mauritius. We measured markers of the metabolic syndrome, including diabetes and obesity-related phenotypes such as fasting plasma glucose, waist:hip ratio, body mass index and fat mass. RESULTS: Statistical genetic analysis revealed associations between SGIP1 polymorphisms and fat mass (in kilograms) as measured by bioimpedance. SNP genotyping identified associations between several genetic variants and fat mass, with the strongest association for rs2146905 (P=4.7 × 10(-5)). A strong allelic effect was noted for several SNPs where fat mass was reduced by up to 9.4% for individuals homozygous for the minor allele. CONCLUSIONS: Our results show association between genetic variants in SGIP1 and fat mass. We provide evidence that variation in SGIP1 is a potentially important determinant of obesity-related traits in humans.


Subject(s)
Body Composition/genetics , Carrier Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Metabolic Syndrome/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , src Homology Domains/genetics , Adaptor Proteins, Signal Transducing , Adult , Aged , Aged, 80 and over , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Cohort Studies , Eating/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Mauritius/epidemiology , Membrane Proteins , Metabolic Syndrome/epidemiology , Middle Aged , Obesity/epidemiology , Pedigree , Phenotype , Prevalence , Rats , Young Adult
2.
Br J Ophthalmol ; 88(12): 1533-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15548806

ABSTRACT

AIM: To describe the clinical characteristics and disease course of a large family with retinitis pigmentosa (RP) from an Arg135Leu change in rhodopsin. METHODS: 29 patients in this family were evaluated. Goldmann visual fields were performed on 14 affected individuals, Ganzfeld electroretinography (ERG) on eight individuals (11-56 years), and blood samples collected on 10 individuals (11-58 years). Patient visual field data were compared with previously reported patients with different rhodopsin mutations using linear regression. RESULTS: An Arg135Leu mutation was identified in rhodopsin. Distinct stages of clinical evolution were identified for this family ranging from normal, white dots, classic bone spicules and, finally, ending with extensive retinal pigment epithelium (RPE) atrophy. 9/16 patients over the age of 20 years also demonstrated marked macular atrophy. All patients who underwent full field ERG testing demonstrated non-recordable ERGs. The overall regression model comparing solid angles of visual fields from patients with rhodopsin mutations (Pro23His, Pro347Ala, Arg135Leu) shows significant effects for age (p = 0.0005), mutation (p = 0.0014), and interaction between age and mutation (p = 0.018) with an R(2) of 0.407. CONCLUSIONS: An Arg135Leu change in rhodopsin results in a severe form of RP that evolves through various fundus appearances that include white dots early in life and classic appearing RP later. This transmembrane change in rhodopsin proves to be more severe than in a family with an intradiscal change and a family with a cytoplasmic change.


Subject(s)
Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Adolescent , Adult , Arginine/genetics , Child , Electroretinography/methods , Family Health , Female , Fluorescein Angiography/methods , Genotype , Humans , Leucine/genetics , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/physiopathology , Visual Acuity/physiology , Visual Field Tests/methods , Visual Fields/physiology
3.
J Biol Chem ; 274(31): 21817-22, 1999 Jul 30.
Article in English | MEDLINE | ID: mdl-10419498

ABSTRACT

Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy.


Subject(s)
Collagen/genetics , Muscular Dystrophies/genetics , Neuromuscular Diseases/genetics , Sequence Deletion , Skin/metabolism , Adult , Amino Acid Sequence , Base Sequence , Cells, Cultured , Collagen/biosynthesis , Collagen/chemistry , Exons , Fibroblasts/metabolism , Humans , Introns , Male , Osteosarcoma , Protein Engineering , Protein Structure, Secondary , RNA Precursors/genetics , Restriction Mapping , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...