Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Food Prot ; 78(2): 355-61, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25710151

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.


Subject(s)
Bacillus anthracis/isolation & purification , Beverages/microbiology , Food Microbiology/methods , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Animals , Bacillus anthracis/genetics , Bioterrorism , DNA Primers , DNA, Bacterial/isolation & purification , Drinking Water/microbiology , Immunomagnetic Separation , Milk/microbiology , Spores, Bacterial/isolation & purification
2.
Vet Microbiol ; 169(3-4): 228-32, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24485934

ABSTRACT

Several technology platforms have been developed to resolve the phylogenetic placement of B. anthracis. However, these methods lack the resolution to identify differences between closely related strains within an outbreak due to the highly clonal nature of B. anthracis. Single Nucleotide Repeats (SNRs) are a type of rapidly evolving genetic marker that can be used to track epidemiological distribution in the event of an outbreak. Four SNR targets were used to detect and type 35 B. anthracis isolates in our collection; 18 from across Canada obtained between 1972 and 2005 and 17 from the 2006 Anthrax outbreak in north eastern Saskatchewan. A control sequence was developed for pyrosequencing which yielded consistent and accurate reads of SNRs. However, when DNA from the isolates was tested using pyrosequencing the results were inconsistent and did not reflect the number of SNRs obtained by Sanger sequencing. The SNR numbers derived from the Sanger sequencing show two of the four SNR loci could provide information on subtype, whereas the other two were not discriminatory. There is variation in SNRs between strains isolated from different outbreaks, the subset of 2006 outbreak strains showed very little difference in SNR number, and thus suggests low diversity among the strains sampled from the same outbreak.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/classification , Bacillus anthracis/genetics , Genetic Markers/genetics , Phylogeny , Sequence Analysis, DNA/standards , Animals , Bacillus anthracis/isolation & purification , Canada , Genetic Variation , Genotype , Nucleotides/genetics , Species Specificity
3.
Int J Food Microbiol ; 165(3): 319-25, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23810955

ABSTRACT

The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores.


Subject(s)
Bacillus anthracis/genetics , Food Microbiology/methods , Animals , Bacillus anthracis/isolation & purification , DNA, Bacterial/genetics , Dairy Products/microbiology , Immunomagnetic Separation , Milk/microbiology , Polymerase Chain Reaction , Sequence Analysis, DNA , Spores, Bacterial , Water Microbiology
4.
J Food Prot ; 76(4): 699-701, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23575137

ABSTRACT

Bacillus anthracis Sterne strain spores were analyzed for their resistance against five disinfectants: commercial sodium hypochlorite, Spor-Klenz Ready-to-Use Cold Sterilant, accelerated hydrogen peroxide (AHP), Virkon, and surface decontamination foam (SDF). The aim of this study was to find an effective disinfectant that would reduce the viability of B. anthracis Sterne spores at ≥6 log in the presence of variables such as animal grease and fat, stainless steel, and temperature (room temperature and 4 °C). SDF and 10% sodium hypochlorite consistently reduced the growth of viable B. anthracis Sterne spores after 5 min in the presence of stainless steel at room temperature. It took at least 10 min of contact time for AHP to consistently reduce spore growth by ≥6 log, while it took at least 20 min for 5% bleach and Spor-Klenz to consistently inactivate ≥6 log spores in the presence of stainless steel at room temperature. AHP was the only disinfectant that reduced the viability of B. anthracis Sterne spores at ≥6 log in the presence of stainless steel and animal grease, both at room temperature and 4 °C after 24 h of contact time.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus anthracis/drug effects , Fats/analysis , Food Contamination/analysis , Microbial Viability , Bacillus anthracis/growth & development , Bacillus anthracis/isolation & purification , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Drug , Food Microbiology , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Spores, Bacterial/drug effects , Spores, Bacterial/isolation & purification , Stainless Steel , Temperature , Time Factors
5.
J Pathog ; 2012: 781652, 2012.
Article in English | MEDLINE | ID: mdl-23091729

ABSTRACT

Interest has recently been renewed in the possible use of Y. pestis, the causative agent of plague, as a biological weapon by terrorists. The vulnerability of food to intentional contamination coupled with reports of humans having acquired plague through eating infected animals that were not adequately cooked or handling of meat from infected animals makes the possible use of Y. pestis in a foodborne bioterrorism attack a reality. Rapid, efficient food sample preparation and detection systems that will help overcome the problem associated with the complexity of the different matrices and also remove any ambiguity in results will enable rapid informed decisions to be made regarding contamination of food with biothreat agents. We have developed a rapid detection assay that combines the use of immunomagnetic separation and pyrosequencing in generating results for the unambiguous identification of Y. pestis from milk (0.9 CFU/mL), bagged salad (1.6 CFU/g), and processed meat (10 CFU/g). The low detection limits demonstrated in this assay provide a novel tool for the rapid detection and confirmation of Y. pestis in food without the need for enrichment. The combined use of the iCropTheBug system and pyrosequencing for efficient capture and detection of Y. pestis is novel and has potential applications in food biodefence.

6.
J Food Prot ; 75(7): 1243-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22980007

ABSTRACT

Food is a vulnerable target for potential bioterrorist attacks; therefore, a critical mitigation strategy is needed for the rapid concentration and detection of biothreat agents from food matrices. Magnetic beads offer a unique advantage in that they have a large surface area for efficient capture of bacteria. We have demonstrated the efficient capture and concentration of Bacillus anthracis (Sterne) spores using immunomagnetic beads for a potential food application. Magnetic beads from three different sources, with varying sizes and surface chemistries, were functionalized with monoclonal antibodies and polyclonal antibodies from commercial sources and used to capture and concentrate anthrax spores from spiked food matrices, including milk, apple juice, bagged salad, processed meat, and bottled water. The results indicated that the Pathatrix beads were more effective in the binding and capture of anthrax spores than the other two bead types investigated. Furthermore, it was observed that the use of polyclonal antibodies resulted in a more efficient recovery of anthrax spores than the use of monoclonal antibodies. Three different magnetic capture methods, inversion, the Pathatrix Auto system, and the new i CropTheBug system, were investigated. The i CropTheBug system yielded a much higher recovery of spores than the Pathatrix Auto system. Spore recoveries ranged from 80 to 100% for the i CropTheBug system when using pure spore preparations, whereas the Pathatrix Auto system had recoveries from 20 to 30%. Spore capture from food samples inoculated at a level of 1 CFU/ml resulted in 80 to 100% capture for milk, bottled water, and juice samples and 60 to 80% for processed meat and bagged salad when using the i CropTheBug system. This efficient capture of anthrax spores at very low concentrations without enrichment has the potential to enhance the sensitivity of downstream detection technologies and will be a useful method in a foodborne bioterrorism response.


Subject(s)
Bacillus anthracis/isolation & purification , Food Contamination/analysis , Immunomagnetic Separation/methods , Spores, Bacterial/isolation & purification , Bioterrorism , Consumer Product Safety , Food Microbiology , Humans
7.
J Microbiol Methods ; 90(3): 228-34, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22634001

ABSTRACT

When a bioterrorism attack is attempted or perpetrated there is considerable risk for public health and large scale socioeconomic consequences. It is imperative that we possess established assays for the rapid identification of biothreat agents with high sensitivity and specificity to ensure emergency response measures can be deployed appropriately. Highly trustworthy information within a relevant timeframe is required to make a rapid and informed decision. Obtaining DNA sequence data from a suspected agent provides an added layer of confidence compared to a presumptive positive PCR amplicon. Sequencing based technologies, such as pyrosequencing, have sufficient discrimination potential to be used for microbial identification and can also be used to identify antimicrobial resistance (AMR) genes. We have shown in this study the power of pyrosequencing in the unambiguous detection and identification of nine Yersinia pestis strains based on virulence genes. Furthermore, we developed assays to characterize their AMR gene profiles. Sequence results ranging from 40 to 84bp were generated in about 60 min following initial PCR amplification and provide a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The high sequence identities (95-100%) and specificity observed indicate the high level of accuracy of pyrosequencing technology. In addition, the read lengths of up to 84 bp observed in this study are unprecedented for pyrosequencing using the Pyromark Q24. We propose this method as a novel, rapid, sequence based detection and identification tool for Y. pestis with a potential application in biodefence.


Subject(s)
Drug Resistance, Bacterial/genetics , Molecular Typing , Sequence Analysis, DNA , Yersinia pestis/genetics , Base Sequence , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Molecular Sequence Data , R Factors/genetics , Sensitivity and Specificity
8.
Biochimie ; 94(8): 1647-59, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22554723

ABSTRACT

The universally conserved GTPase HflX is a putative translation factor whose GTPase activity is stimulated by the 70S ribosome as well as the 50S but not the 30S ribosomal subunit. However, the details and mechanisms governing this interaction are only poorly understood. In an effort to further elucidate the functional mechanism of HflX, we examined its interaction with the 70S ribosome, the two ribosomal subunits (50S and 30S), as well as its ability to interact with guanine nucleotides in the respective ribosomal complexes using a highly purified in vitro system. Binding studies reported here demonstrate that HflX not only interacts with 50S and 70S particles, but also with the 30S subunit, independent of the nucleotide-bound state. A detailed pre-steady-state kinetic analysis of HflX interacting with a non-hydrolyzable analog of mant-GTP, coupled with an enzymatic probing assay utilizing limited trypsinolysis, reveal that HflX·GTP exists in a structurally distinct 50S- and 70S-bound form that stabilizes GTP binding up to 70 000-fold and that may represent the "GTPase-activated" state. This activation is likely required for efficient GTP-hydrolysis, and may be similar to that observed in elongation factor G. Results reported here address the surprising low affinity of free HflX for GTP and suggest that cellular HflX will mainly exist in the HflX·GTP·ribosome-bound form. A minimal model for the functional cycle of HflX is proposed.


Subject(s)
Escherichia coli Proteins/chemistry , GTP-Binding Proteins/chemistry , Guanine Nucleotides/chemistry , Ribosome Subunits, Large, Bacterial , Ribosome Subunits, Small, Bacterial , Escherichia coli , Guanine Nucleotides/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Hydrolysis , Kinetics , Peptide Elongation Factor G/chemistry , Protein Conformation , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/chemistry , Ribosome Subunits, Small, Bacterial/metabolism
9.
Invest Ophthalmol Vis Sci ; 52(9): 6949-58, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21791590

ABSTRACT

PURPOSE: The pharmacokinetics of ophthalmic biotherapeutics are difficult to determine in human vitreous humor. Because of the high transparency of living tissue to near-infrared (NIR) light, the temporal changes in vitreous concentrations of a biomolecule labeled with an NIR fluorescent probe can be monitored in situ with a scanning laser ophthalmoscope (SLO). METHODS: A humanized IgG was labeled with the NIR probe IRDye800CW (CVX-4164). Rabbits were given CVX-4164 intravitreally, and NIR fluorescence intensity was measured in the central plane of the vitreous humor with an SLO. Fluorescence intensities were converted to concentrations by using standard curves. RESULTS: Little background fluorescence was detected, and the minimum detectable concentration of CVX-4164 was <10 nM. Vitreal concentrations of CVX-4164 determined in situ declined with time, with C(max) ≈ 1 µM and t½ = 145 hours (112-µg dose). The t½ of CVX-4164 was approximately three times greater than that of the IRDye800CW alone, whereas the vitreal clearance (CL) and volume of distribution (V(ss)) of the native dye were approximately 2000- and 550-fold greater than that of the conjugate. CVX-4164 concentrations determined in situ were 2.6 to 4.4 times higher than those determined by ex vivo NIR fluorescence or ELISA in homogenized vitreous humor, reflecting the greater spatial resolution of in situ imaging. Moreover, vitreal concentrations determined in situ were >3 orders of magnitude greater than plasma concentrations of CVX-4164, as determined by ELISA, and had a different kinetic profile. CONCLUSIONS: This study demonstrates the feasibility of determining the pharmacokinetics of intraocular biotherapeutics labeled with NIR fluorescent probes by in situ monitoring.


Subject(s)
Fluorescent Dyes/pharmacokinetics , Immunoglobulin G/metabolism , Indoles/pharmacokinetics , Ophthalmoscopy/methods , Spectroscopy, Near-Infrared/methods , Vitreous Body/metabolism , Animals , Enzyme-Linked Immunosorbent Assay , Half-Life , Lasers , Male , Rabbits , Spectrometry, Fluorescence , Tissue Distribution
10.
Proc Natl Acad Sci U S A ; 107(52): 22611-6, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21149738

ABSTRACT

Bispecific antibodies (BsAbs) are regarded as promising therapeutic agents due to their ability to simultaneously bind two different antigens. Several bispecific modalities have been developed, but their utility is limited due to problems with stability and manufacturing complexity. Here we report a versatile technology, based on a scaffold antibody and pharmacophore peptide heterodimers, that enables rapid generation and chemical optimization of bispecific antibodies, which are termed bispecific CovX-Bodies. Two different peptides are joined together using a branched azetidinone linker and fused to the scaffold antibody under mild conditions in a site-specific manner. Whereas the pharmacophores are responsible for functional activities, the antibody scaffold imparts long half-life and Ig-like distribution. The pharmacophores can be chemically optimized or replaced with other pharmacophores to generate optimized or unique bispecific antibodies. As a prototype, we developed a bispecific antibody that binds both vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2) simultaneously, inhibits their function, shows efficacy in tumor xenograft studies, and greatly augments the antitumor effects of standard chemotherapy. This unique antiangiogenic bispecific antibody is in phase-1 clinical trials.


Subject(s)
Angiopoietin-2/immunology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Vascular Endothelial Growth Factor A/immunology , Amino Acid Sequence , Angiopoietin-2/chemistry , Angiopoietin-2/metabolism , Animals , Antibodies, Bispecific/metabolism , Antibody Specificity , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Azetidines/chemistry , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Humans , Immunologic Factors/immunology , Immunologic Factors/metabolism , Immunologic Factors/pharmacokinetics , Macaca fascicularis , Male , Mice , Mice, Nude , Molecular Sequence Data , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Protein Binding , Rats , Rats, Sprague-Dawley , Surface Plasmon Resonance , Tumor Burden/drug effects , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
11.
J Pharm Biomed Anal ; 53(3): 221-7, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20547023

ABSTRACT

Peptides and monoclonal antibodies have both emerged as important therapeutic modalities, but each has challenges which limit their use. Non-recombinant chemical conjugation of peptides onto antibodies has the potential to minimize or eliminate altogether many of these limitations. Once such approach, pioneered by CovX has created the possibility for rapid stoichiometric fusion of pharmacophores to a single antibody platform. These molecules, called CovX-Bodies, maintain both the pharmacologic properties of a given peptide and the pharmacokinetic properties of a monoclonal antibody. The result is a new class of molecules wherein each component contributes desirable traits. In this paper, we demonstrate the use of immunoassay and two-dimensional liquid chromatography mass spectrometry (2DLC/MS) in combination to investigate the antibody conjugates of Glucagon-like peptide-1 (GLP-1) and analogs for intact protein metabolite identification directly from mouse serum. The information gained from combining these approaches has helped guide and expedite the optimization of our drug product development efforts.


Subject(s)
Chromatography, High Pressure Liquid/methods , Enzyme-Linked Immunosorbent Assay/methods , Glucagon-Like Peptide 1/blood , Mass Spectrometry/methods , Peptides/blood , Venoms/blood , Amino Acid Sequence , Animals , Antibodies, Anti-Idiotypic/immunology , Antibody Specificity , Chromatography, Affinity , Exenatide , Male , Mice , Molecular Sequence Data
12.
Biochemistry ; 48(45): 10793-802, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19824612

ABSTRACT

Protein synthesis is a highly conserved process in all living cells involving several members of the translation factor (TRAFAC) class of P-loop GTPases, which play essential roles during translation. The universally conserved GTPase HflX has previously been shown to associate with the 50S ribosomal subunit, as well as to bind and hydrolyze both GTP and ATP. In an effort to elucidate the cellular function of HflX, we have determined the kinetic parameters governing the interaction between HflX and these two purine nucleotides using fluorescence-based steady-state and pre-steady-state techniques. On the basis of these, we demonstrate that the GTPase and ATPase activity of HflX is stimulated by 50S and 70S ribosomal particles. However, given cellular concentrations of the two purine nucleotides, approximately 80% of HflX will be bound to guanine nucleotides, indicating that HflX may function as a guanine nucleotide dependent enzyme in vivo. Using a highly purified reconstituted in vitro translation system, we show that the GTPase activity of HflX is also stimulated by poly(U) programmed 70S ribosomes and that the ribosome-dependent GTPase stimulation is specifically inhibited by the antibiotic chloramphenicol, which binds to the large ribosomal subunit, but not by kanamycin, an aminoglycoside targeting the small ribosomal subunit.


Subject(s)
Escherichia coli Proteins/physiology , Escherichia coli/chemistry , GTP-Binding Proteins/physiology , Base Sequence , DNA Primers , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Hydrolysis , Kinetics , Polymerase Chain Reaction , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...