Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083693

ABSTRACT

This work evaluates the feasibility of using a source level Brain-Computer Interface (BCI) for people with Multiple Sclerosis (MS). Data used was previously collected EEG of eight participants (one participant with MS and seven neurotypical participants) who performed imagined movement of the right and left hand. Equivalent current dipole cluster fitting was used to assess related brain activity at the source level and assessed using dipole location and power spectrum analysis. Dipole clusters were resolved within the motor cortices with some notable spatial difference between the MS and control participants. Neural sources that generate motor imagery originated from similar motor areas in the participant with MS compared to the neurotypical participants. Power spectral analysis indicated a reduced level of alpha power in the participant with MS during imagery tasks compared to neurotypical participants. Power in the beta band may be used to distinguish between left and right imagined movement for users with MS in BCI applications.Clinical Relevance- This paper demonstrates the cortical areas activated during imagined BCI-type tasks in a participant with Multiple Sclerosis (MS), and is a proof of concept for translating BCI research to potential users with MS.


Subject(s)
Brain-Computer Interfaces , Multiple Sclerosis , Humans , Electroencephalography , Feasibility Studies , Imagination
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5686-5689, 2021 11.
Article in English | MEDLINE | ID: mdl-34892412

ABSTRACT

AIM: Brain-Computer Interfaces (BCIs) hold promise to provide people with partial or complete paralysis, the ability to control assistive technology. This study reports offline classification of imagined and executed movements of the upper and lower limb in one participant with multiple sclerosis and people with no limb function deficits. METHODS: We collected neural signals using electroencephalography (EEG) while participants performed executed and imagined motor tasks as directed by prompts shown on a screen. RESULTS: Participants with no limb function attained >70% decoding accuracy on their best-imagined task compared to rest and on at-least one task comparison. The participant with multiple sclerosis also achieved accuracies within the range of participants with no limb function loss.Clinical Relevance - While only one case study is provided it was promising that the participant with MS was able to achieve comparable classification to that of the seven healthy controls. Further studies are needed to assess whether people suffering from MS may be able to use a BCI to improve their quality of life.


Subject(s)
Brain-Computer Interfaces , Multiple Sclerosis , Electroencephalography , Feasibility Studies , Humans , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...