Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562684

ABSTRACT

Learning from point sets is an essential component in many computer vision and machine learning applications. Native, unordered, and permutation invariant set structure space is challenging to model, particularly for point set classification under spatial deformations. Here we propose a framework for classifying point sets experiencing certain types of spatial deformations, with a particular emphasis on datasets featuring affine deformations. Our approach employs the Linear Optimal Transport (LOT) transform to obtain a linear embedding of set-structured data. Utilizing the mathematical properties of the LOT transform, we demonstrate its capacity to accommodate variations in point sets by constructing a convex data space, effectively simplifying point set classification problems. Our method, which employs a nearest-subspace algorithm in the LOT space, demonstrates label efficiency, non-iterative behavior, and requires no hyper-parameter tuning. It achieves competitive accuracies compared to state-of-the-art methods across various point set classification tasks. Furthermore, our approach exhibits robustness in out-of-distribution scenarios where training and test distributions vary in terms of deformation magnitudes.

2.
Article in English | MEDLINE | ID: mdl-38427542

ABSTRACT

This paper presents a new end-to-end signal classification method using the signed cumulative distribution transform (SCDT). We adopt a transport generative model to define the classification problem. We then make use of mathematical properties of the SCDT to render the problem easier in transform domain, and solve for the class of an unknown sample using a nearest local subspace (NLS) search algorithm in SCDT domain. Experiments show that the proposed method provides high accuracy classification results while being computationally cheap, data efficient, and robust to out-of-distribution samples with respect to the existing end-to-end classification methods. The implementation of the proposed method in Python language is integrated as a part of the software package PyTransKit.

3.
Cytometry A ; 103(6): 492-499, 2023 06.
Article in English | MEDLINE | ID: mdl-36772915

ABSTRACT

Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis samples, resulting in a total of 6.3 million bright-field images. We trained a convolutional neural network to distinguish single platelets, platelet aggregates, and white blood cells and performed classical image analysis for each subpopulation individually. Based on derived single-cell features for each population, we trained machine learning models for classification between COVID-19 and non-COVID-19 thrombosis, resulting in a patient testing accuracy of 75%. This result indicates that platelet formation differs between COVID-19 and non-COVID-19 thrombosis. All analysis steps were optimized for efficiency and implemented in an easy-to-use plugin for the image viewer napari, allowing the entire analysis to be performed within seconds on mid-range computers, which could be used for real-time diagnosis.


Subject(s)
COVID-19 , Thrombosis , Humans , Blood Platelets , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
4.
Pattern Recognit ; 1372023 May.
Article in English | MEDLINE | ID: mdl-36713887

ABSTRACT

Deep convolutional neural networks (CNNs) are broadly considered to be state-of-the-art generic end-to-end image classification systems. However, they are known to underperform when training data are limited and thus require data augmentation strategies that render the method computationally expensive and not always effective. Rather than using a data augmentation strategy to encode invariances as typically done in machine learning, here we propose to mathematically augment a nearest subspace classification model in sliced-Wasserstein space by exploiting certain mathematical properties of the Radon Cumulative Distribution Transform (R-CDT), a recently introduced image transform. We demonstrate that for a particular type of learning problem, our mathematical solution has advantages over data augmentation with deep CNNs in terms of classification accuracy and computational complexity, and is particularly effective under a limited training data setting. The method is simple, effective, computationally efficient, non-iterative, and requires no parameters to be tuned. Python code implementing our method is available at https://github.com/rohdelab/mathematical augmentation. Our method is integrated as a part of the software package PyTransKit, which is available at https://github.com/rohdelab/PyTransKit.

5.
Nat Commun ; 12(1): 7135, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887400

ABSTRACT

A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.e., the initiation of microthrombus formation) in detail. Here we report the landscape of circulating platelet aggregates in COVID-19 obtained by massive single-cell image-based profiling and temporal monitoring of the blood of COVID-19 patients (n = 110). Surprisingly, our analysis of the big image data shows the anomalous presence of excessive platelet aggregates in nearly 90% of all COVID-19 patients. Furthermore, results indicate strong links between the concentration of platelet aggregates and the severity, mortality, respiratory condition, and vascular endothelial dysfunction level of COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Platelet Aggregation , Single-Cell Analysis , Thrombosis/virology , COVID-19/blood , Female , Humans , Male , Microscopy , Sex Factors
6.
J Math Imaging Vis ; 63(9): 1185-1203, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35464640

ABSTRACT

We present a new supervised image classification method applicable to a broad class of image deformation models. The method makes use of the previously described Radon Cumulative Distribution Transform (R-CDT) for image data, whose mathematical properties are exploited to express the image data in a form that is more suitable for machine learning. While certain operations such as translation, scaling, and higher-order transformations are challenging to model in native image space, we show the R-CDT can capture some of these variations and thus render the associated image classification problems easier to solve. The method - utilizing a nearest-subspace algorithm in the R-CDT space - is simple to implement, non-iterative, has no hyper-parameters to tune, is computationally efficient, label efficient, and provides competitive accuracies to state-of-the-art neural networks for many types of classification problems. In addition to the test accuracy performances, we show improvements (with respect to neural network-based methods) in terms of computational efficiency (it can be implemented without the use of GPUs), number of training samples needed for training, as well as out-of-distribution generalization. The Python code for reproducing our results is available at [1].

7.
Proc Natl Acad Sci U S A ; 117(40): 24709-24719, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958644

ABSTRACT

Many diseases have no visual cues in the early stages, eluding image-based detection. Today, osteoarthritis (OA) is detected after bone damage has occurred, at an irreversible stage of the disease. Currently no reliable method exists for OA detection at a reversible stage. We present an approach that enables sensitive OA detection in presymptomatic individuals. Our approach combines optimal mass transport theory with statistical pattern recognition. Eighty-six healthy individuals were selected from the Osteoarthritis Initiative, with no symptoms or visual signs of disease on imaging. On 3-y follow-up, a subset of these individuals had progressed to symptomatic OA. We trained a classifier to differentiate progressors and nonprogressors on baseline cartilage texture maps, which achieved a robust test accuracy of 78% in detecting future symptomatic OA progression 3 y prior to symptoms. This work demonstrates that OA detection may be possible at a potentially reversible stage. A key contribution of our work is direct visualization of the cartilage phenotype defining predictive ability as our technique is generative. We observe early biochemical patterns of fissuring in cartilage that define future onset of OA. In the future, coupling presymptomatic OA detection with emergent clinical therapies could modify the outcome of a disease that costs the United States healthcare system $16.5 billion annually. Furthermore, our technique is broadly applicable to earlier image-based detection of many diseases currently diagnosed at advanced stages today.


Subject(s)
Machine Learning , Osteoarthritis, Knee/diagnosis , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Cohort Studies , Disease Progression , Early Diagnosis , Female , Humans , Magnetic Resonance Imaging , Male , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology
8.
Cytometry A ; 97(4): 347-362, 2020 04.
Article in English | MEDLINE | ID: mdl-32040260

ABSTRACT

Cell image classification methods are currently being used in numerous applications in cell biology and medicine. Applications include understanding the effects of genes and drugs in screening experiments, understanding the role and subcellular localization of different proteins, as well as diagnosis and prognosis of cancer from images acquired using cytological and histological techniques. The article also reviews three main approaches for cell image classification most often used: numerical feature extraction, end-to-end classification with neural networks (NNs), and transport-based morphometry (TBM). In addition, we provide comparisons on four different cell imaging datasets to highlight the relative strength of each method. The results computed using four publicly available datasets show that numerical features tend to carry the best discriminative information for most of the classification tasks. Results also show that NN-based methods produce state-of-the-art results in the dataset that contains a relatively large number of training samples. Data augmentation or the choice of a more recently reported architecture does not necessarily improve the classification performance of NNs in the datasets with limited number of training samples. If understanding and visualization are desired aspects, TBM methods can offer the ability to invert classification functions, and thus can aid in the interpretation of results. These and other comparison outcomes are discussed with the aim of clarifying the advantages and disadvantages of each method. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Neural Networks, Computer , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...