Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266147

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown that respiratory infections alter nasopharyngeal (NP) microbiome diversity and enrich opportunistic pathogens. In this study, we have sequenced the 16S rRNA variable regions, V1 through V9, extracted from NP samples of control and COVID-19 (symptomatic and asymptomatic) participants using the Oxford Nanopore technology. Comprehensive bioinformatics analysis investigating the alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index analysis revealed control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in COVID-19 NP microbiome with abundance of opportunistic pathogens such as Cutibacterium, Corynebacterium, Oerskovia, and Cellulomonas in asymptomatic patients, and of Streptomyces and Mycobacteriaceae family in symptomatic patients. Furthermore, we observed sharp rise in enrichment of opportunistic pathogens in symptomatic patients, with abundance of Mycobacteria and Mycoplasma, which strongly correlated with the occurrences of chest pain and fever. Our findings contribute novel insights regarding emergence of opportunistic pathogens in COVID-19 patients and their relationship with symptoms, suggesting their potential role in coinfections.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21261912

ABSTRACT

Vaccine breakthrough infections pose a vast challenge in the eradication of the COVID pandemic situation. Emerging SARS-CoV-2 variants of concern infecting the immunized individuals indicate an ongoing battle between host immunity and natural selection of the pathogen. Our report sheds light on the prominent SARS-CoV-2 variations observed in the isolates from AZD1222/Covishield and BBV152/Covaxin vaccinated subjects.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-417519

ABSTRACT

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying Variants Of Concern (VOC). Besides, viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host Single Nucleotide Variations (iSNVs). Analysing 1, 347 samples collected till June 2020, we recorded 18, 146 iSNV sites throughout the SARS-CoV-2 genome. Both, mutations in RdRp as well as APOBEC and ADAR mediated RNA editing seem to contribute to the differential prevalence of iSNVs in hosts. Noteworthy, 41% of all unique iSNVs were reported as SNVs by 30th September 2020 in samples submitted to GISAID, which increased to [~]80% by 30th June 2021. Following this, analysis of another set of 1, 798 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) variations appeared as iSNVs before getting fixed in the population. We also observe hyper-editing events at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=177 SRC="FIGDIR/small/417519v3_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@12b6ac2org.highwire.dtl.DTLVardef@16df897org.highwire.dtl.DTLVardef@dbbec2org.highwire.dtl.DTLVardef@c8de14_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELECTION OF CITATIONS
SEARCH DETAIL
...