Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 3(1): 423, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32759958

ABSTRACT

The rare sugar D-tagatose is a safe natural product used as a commercial food ingredient. Here, we show that D-tagatose controls a wide range of plant diseases and focus on downy mildews to analyze its mode of action. It likely acts directly on the pathogen, rather than as a plant defense activator. Synthesis of mannan and related products of D-mannose metabolism are essential for development of fungi and oomycetes; D-tagatose inhibits the first step of mannose metabolism, the phosphorylation of D-fructose to D-fructose 6-phosphate by fructokinase, and also produces D-tagatose 6-phosphate. D-Tagatose 6-phosphate sequentially inhibits phosphomannose isomerase, causing a reduction in D-glucose 6-phosphate and D-fructose 6-phosphate, common substrates for glycolysis, and in D-mannose 6-phosphate, needed to synthesize mannan and related products. These chain-inhibitory effects on metabolic steps are significant enough to block initial infection and structural development needed for reproduction such as conidiophore and conidiospore formation of downy mildew.


Subject(s)
Fungi/drug effects , Hexoses/pharmacology , Plant Diseases/prevention & control , Protective Agents/pharmacology , Agrochemicals/chemistry , Agrochemicals/pharmacology , Fungi/pathogenicity , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Hexosephosphates/genetics , Hexoses/chemistry , Phosphorylation/drug effects , Plant Diseases/microbiology
2.
Pest Manag Sci ; 76(10): 3389-3394, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31773889

ABSTRACT

BACKGROUND: Cyclopyrimorate is a highly effective bleaching herbicide discovered by Mitsui Chemicals Agro, Inc. The target site was recently reported to be homogentisate solanesyltransferase (HST) in the plastoquinone (PQ) biosynthesis pathway on the basis of the number of intermediates in cyclopyrimorate-treated plants and in vitro HST assays. Here, the target site of cyclopyrimorate was further explored using both in vivo and in vitro experiments. RESULTS: The cyclopyrimorate-dependent bleaching effect on Arabidopsis thaliana was reversed by decyl PQ, suggesting that this symptom is attributable to the inhibition of PQ biosynthesis. Furthermore, homogentisate (HGA), a substrate of HST, weakly reversed the bleaching effect of cyclopyrimorate in a dose-dependent manner. We expected that the weak reversal by HGA was due to competitive inhibition by cyclopyrimorate or des-morpholinocarbonyl cyclopyrimorate (DMC), a metabolite of cyclopyrimorate in plants that exhibit higher HST-inhibitory activity as compared to cyclopyrimorate. Kinetic analysis was therefore conducted using DMC. DMC inhibited HST competitively with respect to HGA, and was a mixed non-competitive inhibitor with respect to the other substrate, farnesyl diphosphate. Moreover, neither cyclopyrimorate nor DMC inhibited 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanesyl-1,4-benzoquinone methyltransferase, which is located downstream of HST in the PQ biosynthesis pathway. CONCLUSIONS: The target site of cyclopyrimorate and DMC is HST, which is a novel target site for commercial herbicides. © 2019 Society of Chemical Industry.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis , Arabidopsis Proteins , Kinetics , Plastoquinone
3.
J Pestic Sci ; 43(4): 233-239, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30479543

ABSTRACT

The action mechanism of cyclopyrimorate, a novel herbicide for weed control in rice fields, was investigated. Cyclopyrimorate caused bleaching symptoms in Arabidopsis thaliana similar to those caused by existing carotenoid biosynthesis inhibitors, mesotrione and norflurazon. However, cyclopyrimorate treatment resulted in significant accumulation of homogentisate and a reduction in the level of plastoquinone. A metabolite of cyclopyrimorate, des-morpholinocarbonyl cyclopyrimorate (DMC), was detected in plants. These data suggested that cyclopyrimorate and/or DMC inhibit homogentisate solanesyltransferase (HST), a downstream enzyme of 4-hydroxyphenylpyruvate dioxygenase in the plastoquinone biosynthesis pathway. In vitro assays showed that A. thaliana HST was strongly inhibited by DMC and weakly by cyclopyrimorate, whereas other commercial bleaching herbicides did not inhibit HST. DMC derivatives showed a positive correlation between HST inhibition and in vivo bleaching activities. These results indicate that the target site of cyclopyrimorate and DMC is HST, a novel target site of commercial herbicides.

4.
Planta ; 237(5): 1379-91, 2013 May.
Article in English | MEDLINE | ID: mdl-23397192

ABSTRACT

We previously reported that a rare sugar D-allose, which is the D-glucose epimer at C3, inhibits the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half seeds in rice (Fukumoto et al. 2011). D-Allose suppresses expressions of gibberellin-responsive genes downstream of SLR1 protein in the gibberellin-signaling through hexokinase (HXK)-dependent pathway. In this study, we discovered that D-allose induced expression of ABA-related genes including OsNCED1-3 and OsABA8ox1-3 in rice. Interestingly, D-allose also up-regulated expression of OsABF1, encoding a conserved bZIP transcription factor in ABA signaling, in rice. The D-allose-induced expression of OsABF1 was diminished by a hexokinase inhibitor, D-mannoheptulose (MNH). Consistently, D-allose also inhibited Arabidopsis growth, but failed to trigger growth retardation in the glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1. D-Allose activated AtABI5 expression in transgenic gin2 over-expressing wild-type AtHXK1 but not in gin2 over-expressing the catalytic mutant AtHXK1(S177A), indicating that the D-allose phosphorylation by HXK to D-allose 6-phosphate (A6P) is the first step for the up-regulation of AtABI5 gene expression as well as D-allose-induced growth inhibition. Moreover, overexpression of OsABF1 showed increased sensitivity to D-allose in rice. These findings indicated that the phosphorylation of D-allose at C6 by hexokinase is essential and OsABF1 is involved in the signal transduction for D-allose-induced growth inhibition.


Subject(s)
Glucose/metabolism , Glucose/pharmacology , Hexokinase/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Hexokinase/genetics , Oryza/drug effects , Oryza/genetics , Phosphorylation , Plant Proteins/genetics
5.
Planta ; 234(6): 1083-95, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21717189

ABSTRACT

One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Gibberellins/metabolism , Glucose/pharmacology , Hexokinase/metabolism , Oryza/drug effects , Signal Transduction/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Down-Regulation , Gene Expression Regulation, Plant/physiology , Gibberellins/pharmacology , Hexokinase/genetics , Mutation , Oryza/enzymology , Oryza/genetics , Oryza/growth & development , Phenotype , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Seedlings/drug effects , Seedlings/growth & development , alpha-Amylases/genetics , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...