Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Res ; 43(6): 2455-2465, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37247906

ABSTRACT

BACKGROUND/AIM: Primary effusion lymphoma (PEL) is classified as a rare non-Hodgkin's B-cell lymphoma that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV); PEL cells are latently infected with KSHV. PEL is frequently resistant to conventional chemotherapies. Therefore, the development of novel therapeutic agents is urgently required. Nigericin, a H+ and K+ ionophore, possesses unique pharmacological effects. However, the effects of nigericin on PEL cells remain unknown. MATERIALS AND METHODS: We examined the cytotoxic effects of the K+ ionophores, nigericin, nonactin, and valinomycin, on various B-lymphoma cells including PEL. We also evaluated ionophore-induced changes in signaling pathways involved in KSHV-induced oncogenesis. Moreover, the effects of nigericin on mitochondrial membrane potential and viral reactivation in PEL were analyzed. RESULTS: Although the three tested ionophores inhibited the proliferation of several B-lymphoma cell lines, nigericin inhibited the proliferation of PEL cells compared to KSHV-negative cells. In PEL cells, nigericin disrupted the mitochondrial membrane potential and caused the release of cytochrome c, which triggered caspase-9-mediated apoptosis. Nigericin also induced both an increase in phosphorylated p38 MAPK and proteasomal degradation of ß-catenin. Combination treatment of nigericin with the p38 MAPK inhibitor SB203580 potentiated the cytotoxic effects towards PEL cells, compared to either compound alone. Meanwhile, nigericin did not influence viral replication in PEL cells. CONCLUSION: Nigericin induces apoptosis in PEL cells by mitochondrial dysfunction and down-regulation of Wnt/ß-catenin signaling. Thus, nigericin is a novel drug candidate for treating PEL without the risk of de novo KSHV infection.


Subject(s)
Antineoplastic Agents , Herpesvirus 8, Human , Lymphoma, Primary Effusion , Humans , Lymphoma, Primary Effusion/drug therapy , Lymphoma, Primary Effusion/pathology , Nigericin/metabolism , Nigericin/pharmacology , Nigericin/therapeutic use , beta Catenin/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Herpesvirus 8, Human/physiology , Mitochondria , Ionophores/metabolism , Ionophores/pharmacology , Ionophores/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Int J Oncol ; 52(2): 505-517, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29207179

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion lymphoma (PEL) and Kaposi's sarcoma. PEL is a type of non-Hodgkin's B-cell lymphoma, affecting immunosuppressed individuals, such as post-transplant or AIDS patients. However, since PEL is resistant to chemotherapeutic regimens, new effective treatment strategies are required. Arctigenin, a natural lignan compound found in the plant Arctium lappa, has been widely investigated as a potential anticancer agent in the clinical setting. In the present study, we examined the cytotoxic effects of arctigenin by cell viability assay and found that arctigenin markedly inhibited the proliferation of PEL cells compared with KSHV-uninfected B-lymphoma cells under conditions of glucose deprivation. Arctigenin decreased cellular ATP levels, disrupted mitochondrial membrane potential and triggered caspase-9-mediated apoptosis in the glucose-deprived PEL cells. In addition, western blot analysis using phospho-specific antibodies were used to evaluate activity changes in the signaling pathways of interest. As a result, arctigenin suppressed the activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways by inhibiting ERK and p38 MAPK phosphorylation in the glucose-deprived PEL cells. We confirmed that an inhibitor of ERK (U0126) or p38 MAPK (SB202190 and SB203580) suppressed the proliferation of the BC3 PEL cells compared with the KSHV-negative DG75 cells. Moreover, RT-PCR and luciferase reporter assay revealed that arctigenin and p38 MAPK inhibition by SB202190 or SB203580 downregulated the transcriptional expression of unfolded protein response (UPR)­related molecules, including GRP78 and ATF6α under conditions of glucose deprivation. Finally, we confirmed that arctigenin did not affect KSHV replication in PEL cells, suggesting that arctigenin treatment for PEL does not contribute to the risk of de novo KSHV production. These data thus indicate that arctigenin may serve as a lead compound for the development of novel and effective drugs for the treatment of PEL.


Subject(s)
Apoptosis/drug effects , Furans/pharmacology , Lignans/pharmacology , Lymphoma, Primary Effusion/pathology , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP , Glucose/deficiency , Herpesviridae Infections/complications , Herpesvirus 8, Human/drug effects , Humans , Lymphoma, Primary Effusion/virology
3.
Chem Biol Interact ; 266: 28-37, 2017 Mar 25.
Article in English | MEDLINE | ID: mdl-28161410

ABSTRACT

Selenium compounds such as methylseleninic acid (MSA) and sodium selenite (SS) have been widely evaluated as potential anti-cancer agents in the clinical setting. Primary effusion lymphoma (PEL) is a non-Hodgkin's B-cell lymphoma, associated with immunosuppressed individuals, such as post-transplant or AIDS patients. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of PEL and Kaposi's sarcoma. Here, we found that MSA and SS markedly inhibited the growth of PEL cells compared with KSHV-uninfected B cells. MSA and SS caused ER stress, inducing the unfolded protein response (UPR) pathway in PEL cells that resulted in pro-apoptotic UPR, and finally apoptosis. The expression of UPR-related molecules (GRP78 and GADD34) and pro-apoptotic UPR molecules (CHOP, Bim, or Puma) were augmented in PEL cells treated with MSA or SS. In addition, these compounds induced the activation of caspase-4, an ER stress specific caspase, as well as caspase-3,-7, and -9 in PEL cells. We confirmed that thapsigargin which is an inducer of ER stress, dramatically decreased the viability of PEL cells, compared with KSHV-uninfected Ramos cells. We also investigated whether MSA or SS caused oxidization of cellular proteins in PEL cells. MSA and SS increased the levels of oxidative proteins in PEL cells, and the anti-oxidant agent (N-acetyl-l-cysteine) restored cell viability and suppressed caspase-7 activation in PEL cells treated with MSA or SS. Finally, we confirmed that MSA and SS induced neither lytic replication nor viral production in PEL cells. Taken together, MSA and SS could serve as lead compounds for the development of novel and effective drugs against PEL without the risk of de novo KSHV production.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Organoselenium Compounds/pharmacology , Sodium Selenite/pharmacology , Unfolded Protein Response , Apoptosis/genetics , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Humans , Oxidative Stress/drug effects
4.
Int J Oncol ; 48(1): 293-304, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26647777

ABSTRACT

The allyl sulfides, including diallyl sulfide (DAS), diallyl disulfide (DAD), and diallyl trisulfide (DAT), contained in garlic and members of the Allium family, have a variety of pharmacological activities. Therefore, allyl sulfides have been evaluated as potential novel chemotherapeutic agents. Here, we found that DAT inhibited nuclear factor-κB (NF-κB) signaling and induced apoptosis in primary effusion lymphoma (PEL), a subtype of non-Hodgkin's B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). We examined the cytotoxic effects of DAS, DAD and DAT on PEL cells. DAT significantly reduced the viability of PEL cells compared with uninfected B-lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9. DAT induced stabilization of IκBα, and suppressed NF-κB transcriptional activity in PEL cells. We examined the mechanism underlying DAT-mediated IκBα stabilization. The results indicated that DAT stabilized IκBα by inhibiting the phosphorylation of IκBα by the IκB kinase (IKK) complex. Furthermore, DAT induced proteasomal degradation of TRAF6, and DAT suppressed IKKß-phosphorylation through downregulation of TRAF6. It is known that activation of NF-κB is essential for survival of PEL cells. In fact, the NF-κB inhibitor BAY11-7082 induced apoptosis in PEL cells. In addition, DAT suppressed the production of progeny virus from PEL cells. The administration of DAT suppressed the development of PEL cells and ascites in SCID mice xenografted with PEL cells. These findings provide evidence that DAT has antitumor activity against PEL cells in vitro and in vivo, suggesting it to be a novel therapeutic agent for the treatment of PEL.


Subject(s)
Allyl Compounds/administration & dosage , I-kappa B Kinase/metabolism , I-kappa B Proteins/biosynthesis , Intracellular Signaling Peptides and Proteins/biosynthesis , Lymphoma, Primary Effusion/drug therapy , NF-kappa B/genetics , Neoplasm Proteins/biosynthesis , Sulfides/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Humans , I-kappa B Kinase/genetics , I-kappa B Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lymphoma, Primary Effusion/genetics , Lymphoma, Primary Effusion/pathology , Mice , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Nitriles/administration & dosage , Phosphorylation , Proteolysis , Signal Transduction/drug effects , Sulfones/administration & dosage , Xenograft Model Antitumor Assays
5.
Biochem Biophys Res Commun ; 469(3): 565-72, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26692493

ABSTRACT

Primary effusion lymphoma (PEL), a subtype of non-Hodgkin's B-lymphoma, is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. Endoplasmic reticulum (ER) stress induces activation of the unfolded protein response (UPR), which induces expression of ER chaperones, which in turn decrease ER stress, leading to ER homeostasis. The UPR is necessary for not only ER homeostasis but also persistent infection by, and replication of, many viruses. However, the precise roles and regulation of the UPR in KSHV infection remain poorly understood. Here, we found that IRE1α and PERK were significantly downregulated in PEL cells cultured under normal conditions, compared with KSHV-uninfected B-lymphoma cells. IRE1α and PERK mRNA levels were decreased in PEL cells, and KSHV-encoded LANA and v-cyclin D led to suppressed IRE1α transcription. Thapsigargin-induced ER stress activated the UPR and increased the mRNA levels of UPR-related molecules, including IRE1α and PERK, in PEL cells. However the IRE1α and PERK mRNA levels in PEL cells were lower than those in KSHV-uninfected cells. Furthermore, ER stress induced by brefeldin A and thapsigargin dramatically reduced the viability of PEL cells, compared with KSHV-uninfected cells, and induced apoptosis of PEL cells via the pro-apoptotic UPR through expression of CHOP and activation of caspase-9. In addition to the pro-apoptotic UPR, thapsigargin-induced ER stress enhanced transcription of lytic genes, including RTA, K-bZIP and K8.1, and viral production in PEL cells resulted in induction of the lytic cycle. Thus, we demonstrated downregulation of IRE1α and PERK in PEL cells, transcriptional suppression of IRE1α by LANA and v-cyclin D, apoptosis induction in PEL cells by ER stress, and potentiation of lytic replication by ER stress.


Subject(s)
Endoplasmic Reticulum Stress , Herpesvirus 8, Human/physiology , Lymphoma, Primary Effusion/physiopathology , Lymphoma, Primary Effusion/virology , Unfolded Protein Response , Virus Replication/physiology , Cell Survival , HeLa Cells , Humans , Lymphoma, Primary Effusion/pathology
6.
Biochem Biophys Res Commun ; 444(2): 135-40, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24434142

ABSTRACT

Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that sangivamycin may find clinical utility as a novel anti-cancer agent targeting PEL.


Subject(s)
Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Pyrimidine Nucleosides/pharmacology , Blotting, Western , Caspase 7/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Viral , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Host-Pathogen Interactions , Humans , Lymphoma, Primary Effusion/metabolism , Lymphoma, Primary Effusion/pathology , Lymphoma, Primary Effusion/virology , Male , Phosphorylation/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction
7.
Biochim Biophys Acta ; 1818(9): 2202-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22560897

ABSTRACT

Magnesium (Mg(2+)) plays critical role in many physiological processes. The mechanism of Mg(2+) transport has been well documented in bacteria; however, less is known about Mg(2+) transporters in eukaryotes. The AtMRS2 family, which consists of 10 Arabidopsis genes, belongs to a eukaryotic subset of the CorA superfamily proteins. Proteins in this superfamily have been identified by a universally conserved GlyMetAsn motif and have been characterized as Mg(2+) transporters. Some members of the AtMRS2 family, including AtMRS2-10, may complement bacterial mutants or yeast mutants that lack Mg(2+) transport capabilities. Here, we report the purification and functional reconstitution of AtMRS2-10 into liposomes. AtMRS2-10, which contains an N-terminal His-tag, was expressed in Escherichia coli and solubilized with sarcosyl. The purified AtMRS2-10 protein was reconstituted into liposomes. AtMRS2-10 was inserted into liposomes in a unidirectional orientation. Direct measurement of Mg(2+) uptake into proteoliposomes revealed that reconstituted AtMRS2-10 transported Mg(2+) without any accessory proteins. Mutation in the GMN motif, M400 to I, inactivated Mg(2+) uptake. The AtMRS2-10-mediated Mg(2+) influx was blocked by Co(III)hexamine, and was independent of the external pH from 5 to 9. The activity of AtMRS2-10 was inhibited by Co(2+) and Ni(2+); however, it was not inhibited by Ca(2+), Fe(2+), or Fe(3+). While these results indicate that AtMRS2-10 has similar properties to the bacterial CorA proteins, unlike bacterial CorA proteins, AtMRS2-10 was potently inhibited by Al(3+). These studies demonstrate the functional capability of the AtMRS2 proteins in proteoliposomes to study structure-function relationships.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/metabolism , Biophysics/methods , Cation Transport Proteins/physiology , Proteolipids/chemistry , Aluminum/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Cation Transport Proteins/chemistry , Cations , Cobalt/chemistry , Detergents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Ions , Liposomes/chemistry , Magnesium/chemistry , Mutation , Nickel/chemistry , Spectrophotometry, Atomic/methods , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...