Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 15(4): 772-782, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38301116

ABSTRACT

Free, ionic zinc (Zn2+) modulates neurotransmitter dynamics in the brain. However, the sub-s effects of transient concentration changes of Zn2+ on neurotransmitter release and uptake are not well understood. To address this lack of knowledge, we have combined the photolysis of the novel caged Zn2+ compound [Zn(DPAdeCageOMe)]+ with fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes in live, whole brain preparations from zebrafish (Danio rerio). After treating the brain with [Zn(DPAdeCageOMe)]+, Zn2+ was released by application of light that was gated through a computer-controlled shutter synchronized with the FSCV measurements and delivered through a 1 mm fiber optic cable. We systematically optimized the photocage concentration and light application parameters, including the total duration and light-to-electrical stimulation delay time. While sub-s Zn2+ application with this method inhibited DA reuptake, assessed by the first-order rate constant (k) and half-life (t1/2), it had no effect on the electrically stimulated DA overflow ([DA]STIM). Increasing the photocage concentration and light duration progressively inhibited uptake, with maximal effects occurring at 100 µM and 800 ms, respectively. Furthermore, uptake was inhibited 200 ms after Zn2+ photorelease, but no measurable effect occurred after 800 ms. We expect that application of this method to the zebrafish whole brain and other preparations will help expand the current knowledge of how Zn2+ affects neurotransmitter release/uptake in select neurological disease states.


Subject(s)
Dopamine , Zebrafish , Animals , Dopamine/pharmacology , Photolysis , Brain , Neurotransmitter Agents , Electric Stimulation , Microelectrodes
2.
Anal Chem ; 93(14): 5856-5861, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33787228

ABSTRACT

DNAzymes have emerged as a powerful class of sensors for metal ions due to their high selectivity over a wide range of metal ions, allowing for on-site and real-time detection. Despite much progress made in this area, detecting and quantifying tightly bound metal ions, such as those in the blood serum, remain a challenge because the DNAzyme sensors reported so far can detect only mobile metal ions that are accessible to bind the DNAzymes. To overcome this major limitation, we report the use of a photocaged chelator, XDPAdeCage to extract the Zn2+ from the blood serum and then release the chelated Zn2+ into a buffer using 365 nm light for quantification by an 8-17 DNAzyme sensor. Protocols to chelate, uncage, extract, and detect metal ions in the serum have been developed and optimized. Because DNAzyme sensors for other metal ions have already been reported and more DNAzyme sensors can be obtained using in vitro selection, the method reported in this work will significantly expand the applications of the DNAzyme sensors from sensing metal ions that are not only free but also bound to other biomolecules in biological and environmental samples.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Chelating Agents , Ions , Serum , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...