Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Nucl Med ; 35(2): 167-175, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33417152

ABSTRACT

INTRODUCTION: We investigated the characteristics of radio-iodinated 2-[4-(2-iodophenyl)piperidino]cyclopentanol (OI5V) as a single photon emission computed tomography (SPECT) ligand for mapping sigma-1 receptor (σ-1R), which plays an important role in stress remission in many organs. METHODS: OI5V was synthesized from o-bromobenzaldehyde in three steps. OI5V was evaluated for its affinity to VAChT, σ-1 and σ-2 receptor by in vitro competitive binding assays using rat tissues and radioligands, [3H]vesamicol, ( +)-[3H]pentazocine and [3H]DTG, respectively. [125/123I]OI5V was prepared from o-trimethylstannyl-cyclopentanevesamicol (OT5V) by the iododestannylation reaction under no-carrier-added conditions. In vivo biodistribution study of [125I]OI5V in blood, brain regions and major organs of rats was performed at 2, 10, 30 and 60 min post-injection. In vivo blocking study and ex vivo autoradiography were performed to assess the binding selectivity of [125I]OI5V for σ-1 receptor. SPECT-CT imaging study was performed using [123I]OI5V. RESULTS: OI5V demonstrated high selective binding affinity for σ-1R in vitro. In the biodistribution study, the blood-brain barrier (BBB) permeability of [125I]OI5V was high and the accumulation of [125I]OI5V in the rat cortex at 2 min post-injection exceeded 2.00%ID/g. In the in vivo blocking study, the accumulation of [125I]OI5V in the brain was significantly blocked by co-administration of 0.5 µmol of SA4503 and 1.0 µmol of pentazocine. Ex vivo autoradiography revealed that the regional brain accumulation of [125I]OI5V was similar to σ-1R-rich regions of the rat brain. SPECT images of [123I]OI5V in the rat brain reflected the distribution of sigma receptors in the brain. CONCLUSIONS: This study confirmed that [125/123I]OI5V selectively binds σ-1R in the rat brain in vivo. [123I]OI5V was suggested to be useful as a σ-1R ligand for SPECT.


Subject(s)
Cyclopentanes/chemical synthesis , Cyclopentanes/pharmacology , Iodine Radioisotopes/chemistry , Receptors, sigma/analysis , Tomography, Emission-Computed, Single-Photon/methods , Animals , Autoradiography , Blood-Brain Barrier/metabolism , Brain , Humans , Ligands , Liver , Male , Pentazocine/chemistry , Piperazines/chemistry , Piperidines/chemistry , Radiopharmaceuticals/chemistry , Rats, Sprague-Dawley , Staining and Labeling , Structure-Activity Relationship , Tissue Distribution , Sigma-1 Receptor
2.
Synapse ; 74(11): e22176, 2020 11.
Article in English | MEDLINE | ID: mdl-32500935

ABSTRACT

To develop a PET imaging agent to visualize brain cholinergic neurons and synaptic changes caused by Alzheimer's disease, (-)- and (+)-o-[11 C]methyl-trans-decalinvesamicol ([11 C]OMDV) were isolated and investigated for differences in not only their binding affinity and selectivity to vesicular acetylcholine transporter (VAChT), but also their in vivo activities. [11 C]OMDV has a high binding affinity for VAChT both in vitro and in vivo. Racemic OMDV and o-trimethylstannyl-trans-decalinvesamicol (OTDV), which are precursors for synthesis of [11 C]OMDV, were separated into (-)-optical isomers ((-)-OMDV and (-)-OTDV) and (+)-optical isomers ((+)-OMDV and (+)-OTDV) by HPLC. In the in vitro binding assay, (-)-OMDV(7.2 nM) showed eight times higher binding affinity (Ki) to VAChT than that of (+)-OMDV(57.5 nM). In the biodistribution study, the blood-brain barrier permeability of both enantiomers ((-)-[11 C]OMDV and (+)-[11 C]OMDV) was similarly high (about 1.0%ID/g) at 2 min post-injection. However, (+)-[11 C]OMDV clearance from the brain was faster than (-)-[11 C]OMDV. In the in vivo blocking study, accumulation of (-)-[11 C]OMDV in the cortex was markedly decreased (approximately 30% of control) by coadministration of vesamicol, and brain uptake of (-)-[11 C]OMDV was not significantly altered by coadministration of (+)-pentazocine or (+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP). PET-CT imaging revealed inhibition of the rat brain uptake of (-)-[11 C]OMDV by coadministration of vesamicol. In conclusion, (-)-[11 C]OMDV, which is an enantiomer of OMDV, selectively binds to VAChT with high affinity in the rat brain in vivo. (-)-[11 C]OMDV may be utilized as a potential PET ligand for studying presynaptic cholinergic neurons in the brain.


Subject(s)
Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Liver/diagnostic imaging , Liver/metabolism , Piperidines/chemistry , Protein Binding , Radiopharmaceuticals/chemistry , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...