Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(11): e26995, 2011.
Article in English | MEDLINE | ID: mdl-22096515

ABSTRACT

Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.


Subject(s)
Biological Evolution , Birds/genetics , Animals , Birds/classification , Genetics, Population , Phenotype
2.
BMC Evol Biol ; 10: 35, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20128930

ABSTRACT

BACKGROUND: Unlike northern Europe and most of northern North America, the Eastern Palearctic and the northwesternmost tip of North America are believed to have been almost unglaciated during the Quarternary glacial periods. This could have facilitated long-term survival of many organisms in that area. To evaluate this, we studied the phylogeography in east Asia and Alaska of a boreal migratory passerine bird, the Arctic Warbler Phylloscopus borealis, and compared our results with published data on especially North American species. RESULTS: In a sample of 113 individuals from 18 populations we identified 42 haplotypes of the mitochondrial cytochrome b gene, which separated into three clades: A--Alaska and mainland Eurasia (except Kamchatka); B--Kamchatka, Sakhalin and Hokkaido; and C--Honshu, Shikoku and Kyushu (i.e. Japan except Hokkaido). The oldest split among these clades, between A/B and C, is estimated to have taken place sometime between the mid Pliocene and early Pleistocene, and the second divergence, between clades A and B, in the early to mid Pleistocene. Within all of the three main clades, there are signs of population expansion. CONCLUSIONS: The Arctic Warbler separated into three main clades in close succession around the Pliocene/Pleistocene border, with the two northern clades diverging last. All three clades probably experienced population bottlenecks during the Pleistocene as a result of range shifts and contractions, but nevertheless survived and maintained their integrities. Several other clades of Northeastern Palearctic birds are noted to have diversified during the Pliocene. In contrast, avian species or phylogroups presently occupying formerly glaciated North American ground are generally younger. The differences between these regions could be due to slower speciation rates in the Eastern Palearctic due to less fragmentation of forest habitats during glacial periods, or to longer survival of Eastern Palearctic clades as a result of less severe conditions in that region compared to northern North America. Several other Palearctic organisms show concordant biogeographical patterns to that of the Arctic Warbler, indicating common causes of their diversifications.


Subject(s)
Songbirds/classification , Songbirds/genetics , Animals , Genetic Speciation , Geography , Ice , North America , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...