Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phytochemistry ; 72(17): 2219-29, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21903230

ABSTRACT

Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(ß-xylopyranosyl)-6-O-(acyl)-ß-glucopyranoside]-5-O-[6-O-(malonyl)-ß-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-ß-glucopyranoside]-7-O-cellobioside-4'-O-glucopyranoside as the main flavonol pigment. On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H(2)O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] (+) at 2102 m/z (C(93)H(105)O(55) calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.


Subject(s)
Anthocyanins/isolation & purification , Brassicaceae/chemistry , Flowers/chemistry , Pigments, Biological/isolation & purification , Plant Extracts/chemistry , Anthocyanins/chemistry , Molecular Structure , Pigments, Biological/chemistry
2.
Phytochemistry ; 70(5): 672-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19345964

ABSTRACT

Acylated malvidin 3-glucoside was isolated from the purple flowers of Impatiens textori Miq. as a major anthocyanin component along with malvidin 3-(6''-malonyl-glucoside). Its structure was elucidated to be malvidin 3-O-[6-O-(3-hydroxy-3-methylglutaryl)-beta-glucopyranoside] by chemical and spectroscopic methods.


Subject(s)
Anthocyanins/chemistry , Flowers/chemistry , Impatiens/chemistry , Acylation , Glucosides , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Fast Atom Bombardment , Spectrophotometry, Ultraviolet
3.
Phytochemistry ; 69(18): 3139-50, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18514755

ABSTRACT

The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids. Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-beta-glucopyranosyl)-6-O-(trans-p-coumaroyl)-beta-glucopyranoside]-5-O-[6-O-(malonyl)-beta-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-beta-glucopyranosyl)-6-O-(4-O-(beta-glucopyranosyl)-trans-p-coumaroyl)-beta-glucopyranoside]-5-O-[6-O-(malonyl)-beta-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-beta-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-beta-glucopyranosyl)-trans-p-coumaroyl)-beta-glucopyranoside]-5-O-[6-O-(malonyl)-beta-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-beta-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(beta-glucopyranosyl)-trans-feruloyl)-beta-glucopyranosyl)-trans-p-coumaroyl)-beta-glucopyranoside]-5-O-[6-O-(malonyl)-beta-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11. The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.


Subject(s)
Brassicaceae/chemistry , Brassicaceae/metabolism , Flowers/chemistry , Flowers/metabolism , Glucosides/chemistry , Glucosides/metabolism , Molecular Structure
4.
Phytochemistry ; 69(5): 1215-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18164044

ABSTRACT

Anthocyanins were isolated from orange-red flowers of Catharanthus roseus cv 'Equator Deep Apricot', and identified as rosinidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] (1), and also 7-O-methylcyanidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] (2) by chemical and spectroscopic methods. Pigment 1 was found to be a major anthocyanin in the flowers of this cultivar. By contrast, the distribution of rosinidin glycosides is very limited in plants, and reported only in the flowers of Primula. Pigment 2 was found in smaller concentrations, but its aglycone, 7-O-methylcyanidin, has been reported only once before, from the fruit of mango.


Subject(s)
Catharanthus/chemistry , Flowers/chemistry , Galactosides/chemistry , Glycosides/chemistry , Anthocyanins , Catharanthus/growth & development , Galactosides/isolation & purification , Glycosides/isolation & purification , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Reference Standards , Seeds/chemistry , Seeds/growth & development , Spectrophotometry, Ultraviolet
5.
Phytochemistry ; 69(4): 1029-36, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17928016

ABSTRACT

Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.


Subject(s)
Anthocyanins/isolation & purification , Brassicaceae/chemistry , Flowers/chemistry , Glucosides/isolation & purification , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Glucosides/chemistry , Molecular Structure
6.
Phytochemistry ; 68(5): 673-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17174991

ABSTRACT

The triacyl anthocyanins, Leschenaultia blue anthocyanins 1 and 2 (LBAs 1 and 2) were isolated from the blue flowers of Leschenaultia R. Br. cv. Violet Lena (Goodeniaceae), in which LBA 1 was present as a dominant pigment. The structure of LBA 1 was elucidated to be delphinidin 3-O-[6-O-(malonyl)-beta-D-glucopyranoside]-7-O-[6-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] by application of chemical and spectroscopic methods. Since LAB 2 was isolated in small amount, its structure was tentatively assigned as either delphinidin 3-(malonylglucoside)-7-[(glucosyl-p-coumaroyl)-(glucosylcaffeoyl)-glucoside] or delphinidin 3-(malonyl-glucoside)-7-[(glucosyl-caffeoyl)(glucosyl-p-coumaroyl)-glucoside]. This is the first report of the occurrence of 7-polyacylated anthocyanins in the family of Goodeniaceae, although others have been found in the families of the Ranunculaceae, Campanulaceae, and Compositae. Moreover, delphinidin 3-glycoside-7-di-(glucosylcaffeoyl)-glucoside has been reported only in the flowers of Platycodon grandiflorum (Campanulaceae). From a chemotaxonomical viewpoint, the Goodeniaceae may be closely related to the Campanulaceae.


Subject(s)
Anthocyanins/analysis , Asteraceae/chemistry , Flowers/chemistry , Glucosides/chemistry , Acylation , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Caffeic Acids/analysis , Glucosides/isolation & purification , Malonates/analysis , Models, Molecular , Molecular Conformation
7.
Phytochemistry ; 67(12): 1287-95, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16777160

ABSTRACT

Seven acylated cyanidin 3-sambubioside-5-glucosides were isolated from the flowers of three garden plants in the Cruciferae. Specifically, four pigments were isolated from Lobularia maritima (L.) Desv., together with a known pigment, as well as, three pigments from Lunaria annua L., and two known pigments from Cheiranthus cheiri L. These pigments were determined to be cyanidin 3-O-[2-O-((acyl-II)-(beta-d-xylopyranosyl))-6-O-(acyl-I)-beta-d-glucopyranoside]-5-O-[6-O-(acyl-III)-beta-d-glucopyranoside], in which the acyl-I group is represented by glucosyl-p-coumaric acid, p-coumaric acid and ferulic acid, acyl-II by caffeic acid and ferulic acid, and acyl-III by malonic acid, respectively. The distribution and biosynthesis of acylated cyanidin 3-sambubioside-5-glucosides are discussed according to the variations of acylation and glucosylation at their 3-sambubiose residues.


Subject(s)
Brassicaceae/chemistry , Flowers/chemistry , Glucosides/chemistry , Pigments, Biological/chemistry , Acylation , Anthocyanins/chemistry , Magnetic Resonance Spectroscopy , Pigments, Biological/isolation & purification
8.
Phytochemistry ; 66(15): 1852-60, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16045946

ABSTRACT

Five acylated peonidin glycosides were isolated from the pale gray-purple flowers of a duskish mutant in the Japanese morning glory (Ipomoea nil or Pharbitis nil) as major pigments, along with a known anthocyanin, Heavenly Blue Anthocyanin (HBA). Three of these were based on peonidin 3-sophoroside and two on peonidin 3-sophoroside-5-glucoside as their deacylanthocyanins; both deacylanthocyanins were acylated with caffeic acid and/or glucosylcaffeic acids. By spectroscopic and chemical methods, the structures of the former three pigments were determined to be 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside], 3-O-[2-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-glucopyranoside], and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] of peonidin. The structures of the latter two pigments were also confirmed as 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside, and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside of peonidin. The mutation affecting glycosylation and acylation in anthocyanin biosynthesis of Japanese morning glory was discussed.


Subject(s)
Anthocyanins/chemistry , Flowers/genetics , Glycosides/chemistry , Solanaceae/chemistry , Solanaceae/genetics , Acylation , Anthocyanins/isolation & purification , Glycosides/isolation & purification
9.
Phytochemistry ; 66(15): 1844-51, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16023157

ABSTRACT

Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.


Subject(s)
Anthocyanins/chemistry , Flowers/chemistry , Anthocyanins/isolation & purification , Cinnamates/isolation & purification , Color , Japan , Malonates/isolation & purification , Monosaccharides/isolation & purification
10.
Chem Pharm Bull (Tokyo) ; 52(5): 631-3, 2004 May.
Article in English | MEDLINE | ID: mdl-15133223

ABSTRACT

A new diacylated 8-C-glucosylanthocyanin was isolated from the purple flowers of Tricyrtis formosana 'Fujimusume' as one of the major anthocyanins along with four known pigments. The structure of this pigment was determined to be 8-C-(6-O-trans-sinapoyl)-beta-glucopyranosylcyanidin 3-O-(6-O-malonyl-beta-glucopyranoside) by chemical and spectroscopic methods. In addition, four known pigments, 8-C-glucosylcyanidin 3-malonylglucoside, cyanidin 3-glucoside, cyanidin 3-rutinoside and cyanidin 3-malonylglucoside, were identified as the major anthocyanins in the flowers.


Subject(s)
Flowers , Glucosides/chemistry , Glucosides/isolation & purification , Liliaceae , Plant Extracts/chemistry , Plant Extracts/isolation & purification
11.
Phytochemistry ; 62(8): 1239-42, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12648544

ABSTRACT

Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers.


Subject(s)
Alstroemeria/chemistry , Anthocyanins/isolation & purification , Flowers/chemistry , Glycosides/isolation & purification , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Glycosides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Spectrometry, Mass, Fast Atom Bombardment , Spectrophotometry, Ultraviolet
12.
Phytochemistry ; 60(4): 365-73, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12031427

ABSTRACT

Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside].


Subject(s)
Anemone/chemistry , Anthocyanins/chemistry , Acylation , Anthocyanins/isolation & purification , Caffeic Acids/chemistry , Carbohydrate Sequence , Carbohydrates/chemistry , Chromatography/methods , Flowers/chemistry , Hydrolysis , Japan , Magnetic Resonance Spectroscopy/methods , Malonates/chemistry , Molecular Sequence Data , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Spectrometry, Mass, Fast Atom Bombardment , Tartrates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...