Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 14: 1085545, 2023.
Article in English | MEDLINE | ID: mdl-36875039

ABSTRACT

This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.

3.
Front Physiol ; 13: 921862, 2022.
Article in English | MEDLINE | ID: mdl-35784861

ABSTRACT

Space technologies greatly contributed not only to space medicine but also to terrestrial medicine, which actively involves these technologies in everyday practice. Based on the existing countermeasures, and due to similarities of sensorimotor alterations provoked by the weightlessness with various neurological disorders, a lot of work has been dedicated to adaptation and introduction of these countermeasures for rehabilitation of patients. Axial loading suit and mechanical stimulation of the soles' support zones are used in mitigation of stroke and traumatic brain injury consequences. They are also applied for rehabilitation of children with cerebral palsy. Complex application of these proprioceptive correction methods in neurorehabilitation programs makes it possible to effectively treat neurological patients with severe motor disturbances and significant brain damage.

4.
Front Physiol ; 12: 661959, 2021.
Article in English | MEDLINE | ID: mdl-34194336

ABSTRACT

This article describes procedures and some results of the first study of females undergoing 3-day Dry Immersion. The experiment "NAIAD-2020" was carried out at the Institute of Biomedical Problems (Moscow, Russia) with the participation of six healthy women volunteers (age 30.17 ± 5.5 years, height 1.66 ± 0.1 m, weight 62.05 ± 8.4 kg, BMI 22.39 ± 2.2 kg/m2) with a natural menstrual cycle. During the study, a standard protocol was used, the same as for men, with a minimum period of time spent outside the immersion bath. Before, during and after Immersion, 22 experiments were carried out aimed at studying the neurophysiological, functional, metabolic and psychophysiological functions of the body, the results of which will be presented in future publications. The total time outside the bath for women did not exceed that for men. Systolic and diastolic pressure did not significantly change during the immersion. In the first 24 h after the end of the immersion, heart rate was significantly higher than the background values [F(4,20) = 14.67; P < 0.0001]. Changes in body temperature and water balance were consistent with the patterns found in men. No significant changes in height and weight were found during immersion. All women reported general discomfort and pain in the abdomen and back. The results of this study did not find significant risks to women's health and showed the feasibility of using this model of the effects of space flight in women of reproductive age.

5.
Front Physiol ; 10: 284, 2019.
Article in English | MEDLINE | ID: mdl-30971938

ABSTRACT

Dry immersion (DI) is one of the most widely used ground models of microgravity. DI accurately and rapidly reproduces most of physiological effects of short-term space flights. The model simulates such factors of space flight as lack of support, mechanical and axial unloading as well as physical inactivity. The current manuscript gathers the results of physiological studies performed from the time of the model's development. This review describes the changes induced by DI of different duration (from few hours to 56 days) in the neuromuscular, sensory-motor, cardiorespiratory, digestive and excretory, and immune systems, as well as in the metabolism and hemodynamics. DI reproduces practically the full spectrum of changes in the body systems during the exposure to microgravity. The numerous publications from Russian researchers, which until present were mostly inaccessible for scientists from other countries are summarized in this work. These data demonstrated and validated DI as a ground-based model for simulation of physiological effects of weightlessness. The magnitude and rate of physiological changes during DI makes this method advantageous as compared with other ground-based microgravity models. The actual and potential uses of the model are discussed in the context of fundamental studies and applications for Earth medicine.

6.
J Neurophysiol ; 116(1): 98-105, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27075538

ABSTRACT

We reported previously that both transcutaneous electrical spinal cord stimulation and direct pressure stimulation of the plantar surfaces of the feet can elicit rhythmic involuntary step-like movements in noninjured subjects with their legs in a gravity-neutral apparatus. The present experiments investigated the convergence of spinal and plantar pressure stimulation and voluntary effort in the activation of locomotor movements in uninjured subjects under full body weight support in a vertical position. For all conditions, leg movements were analyzed using electromyographic (EMG) recordings and optical motion capture of joint kinematics. Spinal cord stimulation elicited rhythmic hip and knee flexion movements accompanied by EMG bursting activity in the hamstrings of 6/6 subjects. Similarly, plantar stimulation induced bursting EMG activity in the ankle flexor and extensor muscles in 5/6 subjects. Moreover, the combination of spinal and plantar stimulation exhibited a synergistic effect in all six subjects, eliciting greater motor responses than either modality alone. While the motor responses to spinal vs. plantar stimulation seems to activate distinct but overlapping spinal neural networks, when engaged simultaneously, the stepping responses were functionally complementary. As observed during induced (involuntary) stepping, the most significant modulation of voluntary stepping occurred in response to the combination of spinal and plantar stimulation. In light of the known automaticity and plasticity of spinal networks in absence of supraspinal input, these findings support the hypothesis that spinal and plantar stimulation may be effective tools for enhancing the recovery of motor control in individuals with neurological injuries and disorders.


Subject(s)
Leg/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Sensation/physiology , Spinal Cord/physiology , Adult , Biomechanical Phenomena , Electromyography , Humans , Male , Middle Aged , Motor Activity/physiology , Optical Imaging , Physical Stimulation , Pressure , Transcutaneous Electric Nerve Stimulation , Volition , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...