Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(44): 38319-38325, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30360078

ABSTRACT

Optical gating derived from persistent photodoping is a promising technique that can control the transport behavior of two-dimensional (2D) materials through light modulation. The advantage of photoinduced doping is that the doping can be controlled precisely and spatially by tuning the light intensity and position. As most photoinduced doping methods suffer from a low doping level, persistent, strong photodoping was conducted in this study in TiO x-MoS2 heterostructures under ultraviolet (UV) illumination, which precisely controlled the doping to a high level (1.5 × 1013 cm-2) with a trap-mediated mechanism. This mechanism was confirmed by controlling the doping level with various UV pretreatment doses. After photodoping, devices displayed superior mobility, which is a characteristic of the modulation doping used in high-electron-mobility transistors. The modulation doping sites in the inner TiO x layer were far from the channel surface (MoS2); thus, the channel was able to preserve its high-mobility property even after doping. This dose-dependent, strong, and persistent photodoping phenomenon can render the TiO x-MoS2 heterostructure suitable for use in UV detectors and in nonvolatile light-driven memory products. Moreover, by using spatially controlled light scans, selective photodoping at the contact edges can dramatically reduce the contact resistance without destroying the on-off ratio of the device by forming an n+-n-n+ channel. Because TiO x-MoS2 heterostructures are versatile, they provide a compelling platform for high-performance 2D optoelectronic devices.

2.
Sci Rep ; 7: 44768, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322299

ABSTRACT

Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10-6 Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.

3.
Adv Mater ; 27(47): 7809-15, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26509339

ABSTRACT

Ultrastrong and precisely controllable n-type photoinduced doping at a graphene/TiOx heterostructure as a result of trap-state-mediated charge transfer is demonstrated, which is much higher than any other reported photodoping techniques. Based on the strong light-matter interactions at the graphene/TiOx heterostructure, precisely controlled photoinduced bandgap opening of a bilayer graphene device is demonstrated.

4.
Sci Rep ; 5: 11472, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26112341

ABSTRACT

Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2, persistent photoconductivity (PPC) at different levels has been reported. However, a detailed study of the PPC effect and its mechanism in MoS2 is still not available, despite the importance of this effect on the photoresponse of the material. Here, we present a systematic study of the PPC effect in monolayer MoS2 and conclude that the effect can be attributed to random localized potential fluctuations in the devices. Notably, the potential fluctuations originate from extrinsic sources based on the substrate effect of the PPC. Moreover, we point out a correlation between the PPC effect in MoS2 and the percolation transport behavior of MoS2. We demonstrate a unique and efficient means of controlling the PPC effect in monolayer MoS2, which may offer novel functionalities for MoS2-based optoelectronic applications in the future.

5.
Nanoscale Res Lett ; 9(1): 64, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24506825

ABSTRACT

We provide a new approach to identify the substrate influence on graphene surface. Distinguishing the substrate influences or the doping effects of charged impurities on graphene can be realized by optically probing the graphene surfaces, included the suspended and supported graphene. In this work, the line scan of Raman spectroscopy was performed across the graphene surface on the ordered square hole. Then, the bandwidths of G-band and 2D-band were fitted into the Voigt profile, a convolution of Gaussian and Lorentzian profiles. The bandwidths of Lorentzian parts were kept as constant whether it is the suspended and supported graphene. For the Gaussian part, the suspended graphene exhibits much greater Gaussian bandwidths than those of the supported graphene. It reveals that the doping effect on supported graphene is stronger than that of suspended graphene. Compared with the previous studies, we also used the peak positions of G bands, and I2D/IG ratios to confirm that our method really works. For the suspended graphene, the peak positions of G band are downshifted with respect to supported graphene, and the I2D/IG ratios of suspended graphene are larger than those of supported graphene. With data fitting into Voigt profile, one can find out the information behind the lineshapes.

6.
Nanoscale Res Lett ; 8(1): 480, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24229405

ABSTRACT

The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I2D/IG ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I2D/IG ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene. PACS: 78.67.Wj (optical properties of graphene); 74.25.nd (Raman and optical spectroscopy); 63.22.Rc (phonons in graphene).

7.
Nanoscale Res Lett ; 7(1): 533, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-23013616

ABSTRACT

We report the strain effect of suspended graphene prepared by micromechanical method. Under a fixed measurement orientation of scattered light, the position of the 2D peaks changes with incident polarization directions. This phenomenon is explained by a proposed mode in which the peak is effectively contributed by an unstrained and two uniaxial-strained sub-areas. The two axes are tensile strain. Compared to the unstrained sub-mode frequency of 2,672 cm-1, the tension causes a red shift. The 2D peak variation originates in that the three effective sub-modes correlate with the light polarization through different relations. We develop a method to quantitatively analyze the positions, intensities, and polarization dependences of the three sub-peaks. The analysis reflects the local strain, which changes with detected area of the graphene film. The measurement can be extended to detect the strain distribution of the film and, thus, is a promising technology on graphene characterization.

8.
Nanotechnology ; 22(30): 305201, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21719964

ABSTRACT

By using Au-nanorod (Au-NR) doped graphene as a transparent conducting electrode, Si-based metal-oxide-semiconductor (MOS) photodetectors (PDs) exhibit high external quantum efficiency (EQE) and fast response time. It is found that upon adding Au-NRs to the graphene, a significant increase in EQE is observed for both planar and Si-nanotip (Si-NT) MOS PDs. The planar Si-based MOS PDs reveal a notable photoresponse with an EQE of 49% at the peak wavelength of 530 nm under zero bias and an EQE of 66% at the peak wavelength of 600 nm under - 0.4 V bias. For the Si-NTs MOS PD, it exhibits a relatively high EQE of 71% under - 4 V bias due to the effect of light trapping arising from the nature of the Si-NT array.

SELECTION OF CITATIONS
SEARCH DETAIL
...