Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Acad Radiol ; 31(4): 1419-1428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37775447

ABSTRACT

RATIONALE AND OBJECTIVES: To analyze variables that can predict the positivity of 18F-DCFPyL- positron emission tomography/computed tomography (PET/CT) and extent of disease in patients with biochemically recurrent (BCR) prostate cancer after primary local therapy with either radical prostatectomy or radiation therapy. MATERIALS AND METHODS: This is a retrospective analysis of a prospective single institutional review board-approved study. We included 199 patients with biochemical recurrence and negative conventional imaging after primary local therapies (radical prostatectomy n = 127, radiation therapy n = 72). All patients underwent 18F-DCFPyL-PET/CT. Univariate and multivariate logistic regression analyses were used to determine predictors of a positive scan for both cohort of patients. Regression-based coefficients were used to develop nomograms predicting scan positivity and extra-pelvic disease. Decision curve analysis (DCA) was implemented to quantify nomogram's clinical benefit. RESULTS: Of the 127 (63%) post-radical prostatectomy patients, 91 patients had positive scans - 61 of those with intrapelvic lesions and 30 with extra-pelvic lesions (i.e., retroperitoneal or distant nodes and/or bone/organ lesions). Of the 72 post-radiation therapy patients, 65 patients had positive scans - 39 of them had intrapelvic lesions and 26 extra-pelvic lesions. In the radical prostatectomy cohort, multivariate regression analysis revealed original International Society of Urological Pathology category, prostate-specific antigen (PSA), prostate-specific antigen doubling time (PSAdt), and time from BCR (mo) to scan were predictors for scan positivity and presence of extra-pelvic disease, with an area under the curve of 80% and 78%, respectively. Positive versus negative tumor margin after radical prostatectomy was not related to scan positivity or to the presence of positive extra-pelvic foci. In the radiation therapy cohort, multivariate regression analysis revealed that PSA, PSAdt, and time to BCR (mo) were predictors of extra-pelvic disease, with area under the curve of 82%. Because only seven patients in the radiation therapy cohort had negative scans, a prediction model for scan positivity could not be analyzed and only the presence of extra-pelvic disease was evaluated. CONCLUSION: PSA and PSAdt are consistently significant predictors of 18F-DCFPyL PET/CT positivity and extra-pelvic disease in BCR prostate cancer patients. Stratifying the patient population into primary local treatment group enables the use of other variables as predictors, such as time since BCR. This nomogram may guide selection of the most suitable candidates for 18F-DCFPyL-PET/CT imaging.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Prostate-Specific Antigen , Retrospective Studies , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Neoplasm Recurrence, Local/diagnostic imaging
2.
Biomolecules ; 13(10)2023 10 10.
Article in English | MEDLINE | ID: mdl-37892181

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE: The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS: Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS: A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS: Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.


Subject(s)
Glioblastoma , Humans , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Retrospective Studies , Proteome , Proteomics , Antineoplastic Agents, Alkylating , Hedgehog Proteins
3.
Radiology ; 307(4): e221309, 2023 05.
Article in English | MEDLINE | ID: mdl-37129493

ABSTRACT

Background Data regarding the prospective performance of Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 alone and in combination with quantitative MRI features for prostate cancer detection is limited. Purpose To assess lesion-based clinically significant prostate cancer (csPCa) rates in different PI-RADS version 2.1 categories and to identify MRI features that could improve csPCa detection. Materials and Methods This single-center prospective study included men with suspected or known prostate cancer who underwent multiparametric MRI and MRI/US-guided biopsy from April 2019 to December 2021. MRI scans were prospectively evaluated using PI-RADS version 2.1. Atypical transition zone (TZ) nodules were upgraded to category 3 if marked diffusion restriction was present. Lesions with an International Society of Urological Pathology (ISUP) grade of 2 or higher (range, 1-5) were considered csPCa. MRI features, including three-dimensional diameter, relative lesion volume (lesion volume divided by prostate volume), sphericity, and surface to volume ratio (SVR), were obtained from lesion contours delineated by the radiologist. Univariable and multivariable analyses were conducted at the lesion and participant levels to determine features associated with csPCa. Results In total, 454 men (median age, 67 years [IQR, 62-73 years]) with 838 lesions were included. The csPCa rates for lesions categorized as PI-RADS 1 (n = 3), 2 (n = 170), 3 (n = 197), 4 (n = 319), and 5 (n = 149) were 0%, 9%, 14%, 37%, and 77%, respectively. csPCa rates of PI-RADS 4 lesions were lower than PI-RADS 5 lesions (P < .001) but higher than PI-RADS 3 lesions (P < .001). Upgraded PI-RADS 3 TZ lesions were less likely to harbor csPCa compared with their nonupgraded counterparts (4% [one of 26] vs 20% [20 of 99], P = .02). Predictors of csPCa included relative lesion volume (odds ratio [OR], 1.6; P < .001), SVR (OR, 6.2; P = .02), and extraprostatic extension (EPE) scores of 2 (OR, 9.3; P < .001) and 3 (OR, 4.1; P = .02). Conclusion The rates of csPCa differed between consecutive PI-RADS categories of 3 and higher. MRI features, including lesion volume, shape, and EPE scores of 2 and 3, predicted csPCa. Upgrading of PI-RADS category 3 TZ lesions may result in unnecessary biopsies. ClinicalTrials.gov registration no. NCT03354416 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Goh in this issue.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Aged , Prostatic Neoplasms/pathology , Prostate/pathology , Magnetic Resonance Imaging/methods , Prospective Studies , Image-Guided Biopsy/methods , Retrospective Studies
4.
Stat Med ; 42(8): 1263-1276, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36705055

ABSTRACT

Incomplete coverage by cancer registries can lead to an underreporting of cancers and a resulting bias in risk estimates. When registries are defined by geographic region, gaps in observation can arise for individuals who reside outside of or migrate from the total registry catchment area. Moreover, the exact periods of non-observation for an individual may be unknown due to intermittent reporting of residential histories. The motivating example for this work is the U.S. Radiologic Technologist (USRT) study which ascertained cancer outcomes for a national cohort through 43 state/regional registries; similar gaps in outcome ascertainment can appear in other registry or electronic health record- based cohort studies. We propose a two-step procedure for estimating relative and absolute risk in these settings. First, using a mover stayer model fitted to individuals' known residential history, we obtain individual posterior probabilities of residing outside the registry catchment area each year. Second, we incorporate these probabilities in the survival data likelihood for competing risks to account for unobserved events. We assess the performance of the proposed method in extensive simulation studies. Compared to several simple alternative approaches, the proposed method reduces bias and improves efficiency. Finally, we apply the proposed method to a study of first primary lung cancers in the USRT cohort.


Subject(s)
Neoplasms , Humans , Risk , Probability , Computer Simulation , Cohort Studies , Registries
5.
Abdom Radiol (NY) ; 48(3): 1079-1089, 2023 03.
Article in English | MEDLINE | ID: mdl-36526922

ABSTRACT

PURPOSE: To evaluate the cancer detection rates of reduced-core biopsy schemes in patients with unilateral mpMRI-visible intraprostatic lesions and to analyze the contribution of systematic biopsy cores in clinically significant prostate cancer (csPCa) detection. METHODS: 212 patients with mpMRI-visible unilateral intraprostatic lesions undergoing MRI/TRUS fusion-guided targeted biopsy (TBx) and systematic biopsy (SBx) were included. Cancer detection rates of TBx + SBx, as determined by highest Gleason Grade Group (GG), were compared to 3 reduced-core biopsy schemes: TBx alone, TBx + ipsilateral systematic biopsy (IBx; MRI-positive hemigland), and TBx + contralateral systematic biopsy (CBx; MRI-negative hemigland). Patient-level and biopsy core-level data were analyzed using descriptive statistics with confidence intervals. Univariable and multivariable logistic regression analysis was conducted to identify predictors of csPCa (≥ GG2) detected in MRI-negative hemiglands at p < 0.05. RESULTS: Overall, 43.4% (92/212) of patients had csPCa and 66.0% (140/212) of patients had any PCa detected by TBx + SBx. Of patients with csPCa, 81.5% had exclusively ipsilateral involvement (MRI-positive), 7.6% had only contralateral involvement (MRI-negative), and 10.9% had bilateral involvement. The csPCa detection rates of reduced-core biopsy schemes were 35.4% (75/212), 40.1% (85/212), and 39.6% (84/212) for TBx alone, TBx + IBx, and TBx + CBx, respectively, with detection sensitivities of 81.5%, 92.4%, and 91.3% compared to TBx + SBx. CONCLUSION: Reduced-core prostate biopsy strategies confined to the ipsilateral hemigland underestimate csPCa burden by at least 8% in patients with unilateral mpMRI-visible intraprostatic lesions. The combined TBx + SBx strategy maximizes csPCa detection.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Image-Guided Biopsy , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging
6.
J Nucl Med ; 64(3): 395-401, 2023 03.
Article in English | MEDLINE | ID: mdl-36265908

ABSTRACT

Indeterminate bone lesions (IBLs) on prostate-specific membrane antigen (PSMA) PET/CT are common. This study aimed to define variables that predict whether such lesions are likely malignant or benign using features on PSMA PET/CT. Methods: 18F-DCFPyL PET/CT imaging was performed on 243 consecutive patients with high-risk primary or biochemically recurrent prostate cancer. IBLs identified on PSMA PET/CT could not definitively be interpreted as benign or malignant. Medical records of patients with IBLs were reviewed to determine the ultimate status of each lesion. IBLs were deemed malignant or benign on the basis of evidence of progression or stability at follow-up, respectively, or by biopsy results; IBLs were deemed equivocal when insufficient or unclear evidence existed. Post hoc patient, lesion, and scan variables accounting for clustered data were evaluated using Wilcoxon rank-sum and χ2 tests to determine features that favored benign or malignant interpretation. Results: Overall, 98 IBLs within 267 bone lesions (36.7%) were identified in 48 of 243 patients (19.8%). Thirty-seven of 98 IBLs were deemed benign, and 42 were deemed malignant, of which 8 had histologic verification; 19 remained equivocal. Location and SUVmax categorical variables were predictive of IBL interpretation (P = 0.0201 and P = 0.0230, respectively). For IBLs with new interpretations, 34 of 37 (91.9%) considered benign showed an SUVmax of less than 5 or exhibited focal uptake without coexisting bone metastases; 37 of 42 (88.1%) deemed malignant demonstrated an SUVmax of at least 5 or were present with coexisting bone metastases. Logistic regression predicted IBLs with a high SUVmax (univariable: odds ratio [OR], 9.29 [P = 0.0016]; multivariable: OR, 13.87 [P = 0.0089]) or present with other bone metastases (univariable: OR, 9.87 [P = 0.0112]; multivariable: OR, 11.35 [P = 0.003]) to be malignant. Conclusion: IBLs on PSMA PET/CT are concerning; however, characterizing their location, SUV, and additional scan findings can aid interpretation. IBLs displaying an SUVmax of at least 5 or present with other bone metastases favor malignancy. IBLs without accompanying bone metastases that exhibit an SUVmax of less than 5 and are observed only in atypical locations favor benign processes. These guidelines may assist in the interpretation of IBLs on PSMA PET/CT.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Neoplasm Recurrence, Local , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Gallium Radioisotopes
7.
Biostatistics ; 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534828

ABSTRACT

Disease incidence data in a national-based cohort study would ideally be obtained through a national disease registry. Unfortunately, no such registry currently exists in the United States. Instead, the results from individual state registries need to be combined to ascertain certain disease diagnoses in the United States. The National Cancer Institute has initiated a program to assemble all state registries to provide a complete assessment of all cancers in the United States. Unfortunately, not all registries have agreed to participate. In this article, we develop an imputation-based approach that uses self-reported cancer diagnosis from longitudinally collected questionnaires to impute cancer incidence not covered by the combined registry. We propose a two-step procedure, where in the first step a mover-stayer model is used to impute a participant's registry coverage status when it is only reported at the time of the questionnaires given at 10-year intervals and the time of the last-alive vital status and death. In the second step, we propose a semiparametric working model, fit using an imputed coverage area sample identified from the mover-stayer model, to impute registry-based survival outcomes for participants in areas not covered by the registry. The simulation studies show the approach performs well as compared with alternative ad hoc approaches for dealing with this problem. We illustrate the methodology with an analysis that links the United States Radiologic Technologists study cohort with the combined registry that includes 32 of the 50 states.

8.
PLoS One ; 17(11): e0277407, 2022.
Article in English | MEDLINE | ID: mdl-36367894

ABSTRACT

BACKGROUND: While prostate specific membrane antigen (PSMA) is overexpressed in high-grade prostate cancers, it is also expressed in tumor neovasculature and other malignancies, including hepatocellular carcinoma (HCC). Importantly, no functional imaging for HCC is clinically available, making diagnosis and surveillance following local therapies particularly challenging. 18F-DCFPyL binds with high affinity to PSMA yet clears rapidly from the blood pool. PET imaging with 18F-DCFPyL may represent a new tool for staging, surveillance and assessment of treatment response in HCC. The purpose of this Functional Imaging Liver Cancer (FLIC) trial is to assess the ability of 18F-DCFPyL-PET/CT to detect sites of HCC. METHODS: This is a phase II multi-site prospective imaging trial with a plan to enroll 50 subjects with suspected HCC on standard of care CT or MRI and eligible for standard local treatment. Participants will undergo a baseline 18F-DCFPyL-PET/CT, prior to therapy. Subjects will also be scanned with 18F-FDG-PET/CT within 2 weeks of 18F-DCFPyL-PET/CT. Participants will undergo histopathologic assessment and standard of care local treatment for HCC within a multidisciplinary team context. Participants with histopathologic confirmation of HCC and a positive baseline 18F-DCFPyL-PET/CT will undergo a post-treatment 18F-DCFPyL-PET/CT during the first routine follow-up, typically within 4-8 weeks. Subjects with negative baseline 18F-DCFPyL-PET/CT will not be re-scanned after treatment but will remain in follow-up. Participants will be followed for 5-years to assess for progression-free-survival. The primary endpoint is the positive predictive value of 18F-DCFPyL-PET for HCC as confirmed by histopathology. Secondary endpoints include comparison of 18F-DCFPyL-PET/CT with CT, MRI, and 18F-FDG-PET/CT, and evaluation of the value of 18F-DCFPyL-PET/CT in assessing treatment response following local treatment. Exploratory endpoints include next generation sequencing of tumors, and analysis of extracellular vesicles to identify biomarkers associated with response to therapy. DISCUSSION: This is a prospective imaging trial designed to evaluate whether PSMA-PET/CT imaging with 18F-DCFPyL can detect tumor sites, assess local treatment response in HCC patients, and to eventually determine whether PSMA-PET/CT could improve outcomes of patients with HCC receiving standard of care local therapy. Importantly, this trial may help determine whether PSMA-selective radiopharmaceutical therapies may be beneficial for patients with HCC. CLINICAL TRIAL REGISTRATION: NIH IND#133631. Submission date: 04-07-2021. Safe-to-proceed letter issued by FDA: 05.07.2021. NIH IRB #00080. ClinicalTrials.gov Identifier NCT05009979. Date of Registry: 08-18-2021. Protocol version date: 01-07-2022.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Prospective Studies , Fluorodeoxyglucose F18 , Prostatic Neoplasms/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Urea , Clinical Trials, Phase II as Topic
9.
Adv Radiat Oncol ; 7(6): 101024, 2022.
Article in English | MEDLINE | ID: mdl-36420197

ABSTRACT

Purpose: This phase 1 trial aimed to identify the maximally tolerated hypofractionated dose schedule for postoperative radiation therapy (PORT) after radical prostatectomy. Secondary objectives included biochemical control and quality of life (QoL) measures. Methods and Materials: Patients were treated on 1 of 3 dose levels (DLs): 56.4 Gy in 20 fractions (DL1), 51.2 Gy in 15 fractions (DL2), and 44.2 Gy in 10 fractions (DL3). Treatment was delivered to the prostate bed without pelvic nodal irradiation. Dose escalation followed a standard 3 + 3 design with an expansion for 6 additional patients at the maximally tolerated hypofractionated dose schedule. Acute dose-limiting toxicity (DLT) was defined as grade 3 toxicity lasting >4 days within 21 days of PORT completion; late DLT was defined as grade 4 gastrointestinal (GI) or genitourinary (GU) toxicity. Results: Between January 2018 and August 2019, 15 patients underwent radiation treatment: 3 on DL1, 3 on DL2, and 9 on DL3. The median follow-up was 24 months. There were no DLTs, and the maximally tolerated hypofractionated dose schedule was identified as DL3. Two of the 15 patients (13.3%) experienced biochemical failure (prostate-specific antigen >0.1). Ten of 15 patients (67%) had grade 2+ acute toxicities, consisting of transient GI toxicities. Three patients experienced late grade 2+ GI toxicity, and 5 patients experienced late grade 2+ GU toxicity. Late grade 3 GU toxicity occurred in 2 patients. There were no grade 4+ acute or late toxicities. There were no significant differences in GI measures of QoL, however, there was an increase in GU symptoms and corresponding decrease in GU QoL between 12 and 24 months. Conclusions: The maximum tolerated hypofractionated dose schedule for hypofractionated PORT to the prostate bed was determined to be 44.2 Gy in 10 daily fractions. The most frequent clinically significant toxicities were late grade 2+ GU toxicities, which corresponded to a worsening of late GU QoL.

10.
Stat Neerl ; 76(3): 309-330, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35936973

ABSTRACT

This paper develops methods to test for associations between two variables with clustered data using a U-Statistic approach with a second-order approximation to the variance of the parameter estimate for the test statistic. The tests that are presented are for clustered versions of: Pearsons χ 2 test, the Spearman rank correlation and Kendall's τ for continuous data or ordinal data and for alternative measures of Kendall's τ that allow for ties in the data. Shih and Fay use the U-Statistic approach but only consider a first-order approximation. The first-order approximation has inflated significance level in scenarios with small sample sizes. We derive the test statistics using the second-order approximations aiming to improve the type I error rates. The method applies to data where clusters have the same number of measurements for each variable or where one of the variables may be measured once per cluster while the other variable may be measured multiple times. We evaluate the performance of the test statistics through simulation with small sample sizes. The methods are all available in the R package cluscor.

12.
Eur Urol Oncol ; 5(2): 176-186, 2022 04.
Article in English | MEDLINE | ID: mdl-33846112

ABSTRACT

BACKGROUND: While magnetic resonance imaging (MRI)-targeted biopsy (TBx) results in better prostate cancer (PCa) detection relative to systematic biopsy (SBx), the combination of both methods increases clinically significant PCa detection relative to either Bx method alone. However, combined Bx subjects patients to higher number of Bx cores and greater detection of clinically insignificant PCa. OBJECTIVE: To determine if prebiopsy prostate MRI can identify men who could forgo combined Bx without a substantial risk of missing clinically significant PCa (csPC). DESIGN, SETTING, AND PARTICIPANTS: Men with MRI-visible prostate lesions underwent combined TBx plus SBx. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary outcomes were detection rates for grade group (GG) ≥2 and GG ≥3 PCa by TBx and SBx, stratified by Prostate Imaging-Reporting and Data System (PI-RADS) score. RESULTS AND LIMITATIONS: Among PI-RADS 5 cases, nearly all csPCs were detected by TBx, as adding SBx resulted in detection of only 2.5% more GG ≥2 cancers. Among PI-RADS 3-4 cases, however, SBx addition resulted in detection of substantially more csPCs than TBx alone (8% vs 7.5%). Conversely, TBx added little to detection of csPC among men with PI-RADS 2 lesions (2%) relative to SBx (7.8%). CONCLUSIONS: While combined Bx increases the detection of csPC among men with MRI-visible prostate lesions, this benefit was largely restricted to PI-RADS 3-4 lesions. Using a strategy of TBx only for PI-RADS 5 and combined Bx only for PI-RADS 3-4 would avoid excess biopsies for men with PI-RADS 5 lesions while resulting in a low risk of missing csPC (1%). PATIENT SUMMARY: Our study investigated an optimized strategy to diagnose aggressive prostate cancer in men with an abnormal prostate MRI (magnetic resonance imaging) scan while minimizing the risk of excess biopsies. We used a scoring system for MRI scan images called PI-RADS. The results show that MRI-targeted biopsies alone could be used for men with a PI-RADS score of 5, while men with a PI-RADS score of 3 or 4 would benefit from a combination of MRI-targeted biopsy and systematic biopsy. This trial is registered at ClinicalTrials.gov as NCT00102544.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Male , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Risk Assessment
13.
J Urol ; 207(1): 95-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34433302

ABSTRACT

PURPOSE: Multiple studies demonstrate magnetic resonance imaging (MRI)-targeted biopsy detects more clinically significant cancer than systematic biopsy; however, some clinically significant cancers are detected by systematic biopsy only. While these events are rare, we sought to perform a retrospective analysis of these cases to ascertain the reasons that MRI-targeted biopsy missed clinically significant cancer which was subsequently detected on systematic prostate biopsy. MATERIALS AND METHODS: Patients were enrolled in a prospective study comparing cancer detection rates by transrectal MRI-targeted fusion biopsy and systematic 12-core biopsy. Patients with an elevated prostate specific antigen (PSA), abnormal digital rectal examination, or imaging findings concerning for prostate cancer underwent prostate MRI and subsequent MRI-targeted and systematic biopsy in the same setting. The subset of patients with grade group (GG) ≥3 cancer found on systematic biopsy and GG ≤2 cancer (or no cancer) on MRI-targeted biopsy was classified as MRI-targeted biopsy misses. A retrospective analysis of the MRI and MRI-targeted biopsy real-time screen captures determined the cause of MRI-targeted biopsy miss. Multivariable logistic regression analysis compared baseline characteristics of patients with MRI-targeted biopsy misses to GG-matched patients whose clinically significant cancer was detected by MRI-targeted biopsy. RESULTS: Over the study period of 2007 to 2019, 2,103 patients met study inclusion criteria and underwent combined MRI-targeted and systematic prostate biopsies. A total of 41 (1.9%) men were classified as MRI-targeted biopsy misses. Most MRI-targeted biopsy misses were due to errors in lesion targeting (21, 51.2%), followed by MRI-invisible lesions (17, 40.5%) and MRI lesions missed by the radiologist (3, 7.1%). On logistic regression analysis, lower Prostate Imaging-Reporting and Data System (PI-RADSTM) score was associated with having clinically significant cancer missed on MRI-targeted biopsy. CONCLUSIONS: While uncommon, most MRI-targeted biopsy misses are due to errors in lesion targeting, which highlights the importance of accurate co-registration and targeting when using software-based fusion platforms. Additionally, some patients will harbor MRI-invisible lesions which are untargetable by MRI-targeted platforms. The presence of a low PI-RADS score despite a high PSA is suggestive of harboring an MRI-invisible lesion.


Subject(s)
Magnetic Resonance Imaging , Missed Diagnosis , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Humans , Image-Guided Biopsy/methods , Male , Middle Aged , Retrospective Studies
14.
J Nucl Med ; 63(5): 735-741, 2022 05.
Article in English | MEDLINE | ID: mdl-34475237

ABSTRACT

18F-DCFPyL, 18F-sodium fluoride (18F-NaF), and 18F-FDG PET/CT were compared in a prospective cohort of men with metastatic prostate cancer (PCa). Methods: Sixty-seven men (group 1) with documented metastatic PCa underwent 18F-DCFPyL and 18F-NaF PET/CT and a subgroup of 30 men (group 2) underwent additional imaging with 18F-FDG PET/CT. The tracers were compared for their detection rates, imaging concordance, associations with prostate-specific antigen (PSA), treatment at the time of imaging, and castration status. Results: Overall, 61 men had metastatic disease detected on one or more scans, and 6 men had no disease uptake on any of the PET/CT scans (and were subsequently excluded from the analysis). In group 1, 18F-NaF detected significantly more metastatic lesions than 18F-DCFPyL (median of 3 lesions vs. 2, P = 0.001) even after eliminating benign causes of 18F-NaF uptake. This difference was particularly clear for men receiving treatment (P = 0.005) or who were castration-resistant (P = 0.014). The median percentage of bone lesions that were concordant on 18F-DCFPyL and 18F-NaF was 50%. In group 2, 18F-DCFPyL detected more lesions than 18F-FDG (median of 5 lesions vs. 2, P = 0.0003), regardless of PSA level, castration status, or treatment. The median percentage of lesions that were concordant on 18F-DCFPyL and 18F-FDG was 22.2%. This percentage was slightly higher for castration-resistant than castration-sensitive men (P = 0.048). Conclusion:18F-DCFPyL PET/CT is the most versatile of the 3 PET agents for metastatic PCa; however, 18F-NaF detects more bone metastases. Imaging reveals substantial tumor heterogeneity with only 50% concordance between 18F-DCFPyL and 18F-NaF and 22% concordance for 18F-DCFPyL and 18F-FDG. These findings indicate considerable phenotypic differences among metastatic lesions.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Fluorodeoxyglucose F18 , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Sodium Fluoride
15.
J Nucl Med ; 63(8): 1184-1190, 2022 08.
Article in English | MEDLINE | ID: mdl-34916246

ABSTRACT

Our objective was to investigate the factors predicting scan positivity and disease location in patients with biochemical recurrence (BCR) of prostate cancer (PCa) after primary local therapy using prostate-specific membrane antigen-targeted 18F-DCFPyL PET/CT. Methods: This was a 2-institution study including 245 BCR PCa patients after primary local therapy and negative results on conventional imaging. The patients underwent 18F-DCFPyL PET/CT. We tested for correlations of lesion detection rate and disease location with tumor characteristics, time from initial therapy, prostate-specific antigen (PSA) level, and PSA doubling time (PSAdt). Multivariate logistic regression analyses were used to determine predictors of a positive scan. Regression-based coefficients were used to develop nomograms predicting scan positivity and extrapelvic disease. Results: Overall, 79.2% (194/245) of patients had a positive 18F-DCFPyL PET/CT result, with detection rates of 48.2% (27/56), 74.3% (26/35), 84% (37/44), 96.7% (59/61), and 91.8% (45/49) for PSAs of <0.5, 0.5 to <1.0, 1.0 to <2.0, 2.0 to <5.0, and ≥5.0 ng/mL, respectively. Patients with lesions confined to the pelvis had lower PSAs than those with distant sites (1.6 ± 3.5 vs. 3.0 ± 6.3 ng/mL, P < 0.001). In patients treated with prostatectomy (n = 195), 24.1% (47/195) had a negative scan result, 46.1% (90/195) showed intrapelvic disease, and 29.7% (58/195) showed extrapelvic disease. In the postradiation subgroup (n = 50), 18F-DCFPyL PET/CT was always negative at a PSA lower than 1.0 ng/mL and extrapelvic disease was seen only when PSA was greater than 2.0 ng/mL. At multivariate analysis, PSA and PSAdt were independent predictive factors of scan positivity and the presence of extrapelvic disease in postsurgical patients, with area under the curve of 78% and 76%, respectively. PSA and PSAdt were independent predictors of the presence of extrapelvic disease in the postradiation cohort, with area under the curve of 85%. Time from treatment to scan was significantly longer for prostatectomy-bed-only recurrences than for those with bone or visceral disease (6.2 ± 6.4 vs. 2.4 ± 1.3 y, P < 0.001). Conclusion:18F-DCFPyL PET/CT offers high detection rates in BCR PCa patients. PSA and PSAdt are able to predict scan positivity and disease location. Furthermore, the presence of bone or visceral lesions is associated with shorter intervals from treatment than are prostate-bed-only recurrences. These tools might guide clinicians to select the most suitable candidates for 18F-DCFPyL PET/CT imaging.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Male , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/surgery , Positron Emission Tomography Computed Tomography/methods , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Recurrence
16.
Stat Methods Med Res ; 30(10): 2288-2312, 2021 10.
Article in English | MEDLINE | ID: mdl-34468233

ABSTRACT

In many imaging studies, each case is reviewed by human readers and characterized according to one or more features. Often, the inter-reader agreement of the feature indications is of interest in addition to their diagnostic accuracy or association with clinical outcomes. Complete designs in which all participating readers review all cases maximize efficiency and guarantee estimability of agreement metrics for all pairs of readers but often involve a heavy reading burden. Assigning readers to cases using balanced incomplete block designs substantially reduces reading burden by having each reader review only a subset of cases, while still maintaining estimability of inter-reader agreement for all pairs of readers. Methodology for data analysis and power and sample size calculations under balanced incomplete block designs is presented and applied to simulation studies and an actual example. Simulation studies results suggest that such designs may reduce reading burdens by >40% while in most scenarios incurring a <20% increase in the standard errors and a <8% and <20% reduction in power to detect between-modality differences in diagnostic accuracy and κ statistics, respectively.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
17.
Diagn Interv Radiol ; 27(3): 394-400, 2021 May.
Article in English | MEDLINE | ID: mdl-34003127

ABSTRACT

PURPOSE: We aimed to assess post-interventional and 36-month follow-up results of a single-center, single-arm, in-bore phase I trial of focal laser ablation (FLA) guided by multiparametric magnetic resonance imaging (mpMRI). METHODS: FLA procedures were done in-bore MRI using a transperineal approach. Primary endpoints were feasibility and safety expressed as lack of grade 3 complications. Secondary endpoints were changes in international prostate symptom score (IPSS), sexual health inventory for men (SHIM), quality of life (QoL) scores, and serum prostate specific antigen (PSA) levels. Treatment outcomes were assessed by combined mpMRI-ultrasound fusion-guided and extended sextant systematic biopsy after 12, 24, and optionally after 36 months. RESULTS: Fifteen participants were included. Seven patients (46.67%) had Gleason 3+3 and 8 patients (53.33%) had Gleason 3+4 cancer. All patients tolerated the procedure well, and no grade 3/4 complications occurred. All grade 1 and 2 complications were transient and resolved completely. There was no significant change in mean IPSS from baseline (-1, p = 0.460) and QoL (0, p = 0.441) scores following FLA but there was a significant drop in mean SHIM scores (-2, p = 0.010) compared to pretreatment baselines. Mean PSA significantly decreased after FLA (-2.5, p < 0.001). Seven out of 15 patients (46.67%) had residual cancer in, adjacent, or in close proximity to the treatment area (1 × 4+3=7, 1 × 3+4=7, and 5 × 3+3=6). Four out of 15 patients (26.67%) underwent salvage therapy (2 repeat FLA, 2 radical prostatectomy). CONCLUSION: After 3 years of follow-up we conclude focal laser ablation is safe and feasible without significant complications.


Subject(s)
Laser Therapy , Prostatic Neoplasms , Follow-Up Studies , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Male , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Quality of Life
18.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33883258

ABSTRACT

BACKGROUND: Full application of cytokines as oncoimmunotherapeutics requires identification of optimal regimens. Our initial effort with intravenous bolus recombinant human interleukin-15 (rhIL-15) was limited by postinfusional reactions. Subcutaneous injection and continuous intravenous infusion for 10 days (CIV-10) provided rhIL-15 with less toxicity with CIV-10 giving the best increases in CD8+ lymphocytes and natural killer (NK) cells. To ease rhIL-15 administration, we shortened time of infusion. Treatment with rhIL-15 at a dose of 3-5 µg/kg as a 5-day continuous intravenous infusion (CIV-5) had no dose-limiting toxicities while effector cell stimulation was comparable to the CIV-10 regimen. METHODS: Eleven patients with metastatic cancers were treated with rhIL-15 CIV-5, 3 µg (n=4), 4 µg (n=3), and 5 µg/kg/day (n=4) in a phase I dose-escalation study (April 6, 2012). RESULTS: Impressive expansions of NK cells were seen at all dose levels (mean 34-fold), including CD56bright NK cells (mean 144-fold for 4 µg/kg), as well as an increase in CD8+ T cells (mean 3.38-fold). At 5 µg/kg/day, there were no dose-limiting toxicities but pulmonary capillary leak and slower patient recovery. This led to our choice of the 4 µg/kg as CIV-5 dose for further testing. Cytolytic capacity of CD56bright and CD56dim NK cells was increased by interleukin-15 assayed by antibody-dependent cellular cytotoxicity (ADCC), natural cytotoxicity and natural killer group 2D-mediated cytotoxicity. The best response was stable disease. CONCLUSIONS: IL-15 administered as CIV-5 substantially expanded NK cells with increased cytotoxic functions. Tumor-targeting monoclonal antibodies dependent on ADCC as their mechanism of action including alemtuzumab, obinutuzumab, avelumab, and mogamulizumab could benefit from those NK cell expansions and provide a promising therapeutic strategy. TRIAL REGISTRATION NUMBERS: NCT01572493, NCT03759184, NCT03905135, NCT04185220 and NCT02689453.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell Proliferation/drug effects , Interleukin-15/administration & dosage , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Neoplasms/drug therapy , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic/drug effects , Drug Administration Schedule , Female , Humans , Infusions, Intravenous , Interleukin-15/adverse effects , K562 Cells , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Count , Male , Maryland , Middle Aged , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/metabolism , Time Factors , Treatment Outcome
19.
Eur Urol Oncol ; 4(2): 227-234, 2021 04.
Article in English | MEDLINE | ID: mdl-33867045

ABSTRACT

BACKGROUND: The ability of serial magnetic resonance imaging (MRI) to capture pathologic progression during active surveillance (AS) remains in question. OBJECTIVE: To determine whether changes in MRI are associated with pathologic progression for patients on AS. DESIGN, SETTING, AND PARTICIPANTS: From July 2007 through January 2020, we identified all patients evaluated for AS at our institution. Following confirmatory biopsy, a total of 391 patients who underwent surveillance MRI and biopsy at least once were identified (median follow-up of 35.6 mo, interquartile range 19.7-60.6). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: All MRI intervals were scored using the "Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation" (PRECISE) criteria, with PRECISE scores =4 considered a positive change in MRI. A generalized estimating equation-based logistic regression analysis was conducted for all intervals with a PRECISE score of <4 to determine the predictors of Gleason grade group (GG) progression despite stable MRI. RESULTS AND LIMITATIONS: A total of 621 MRI intervals were scored by PRECISE and validated by biopsy. The negative predictive value of stable MRI (PRECISE score <4) was greatest for detecting GG1 to?=?GG3 disease (0.94 [0.91-0.97]). If 2-yr surveillance biopsy were performed exclusively for a positive change in MRI, 3.7% (4/109) of avoided biopsies would have resulted in missed progression from GG1 to?=?GG3 disease. Prostate-specific antigen (PSA) density (odds ratio 1.95 [1.17-3.25], p?=? 0.01) was a risk factor for progression from GG1 to =GG3 disease despite stable MRI. CONCLUSIONS: In patients with GG1 disease and stable MRI (PRECISE score <4) on surveillance, grade progression to?=?GG3 disease is not common. In patients with grade progression detected on biopsy despite stable MRI, elevated PSA density appeared to be a risk factor for progression to?=?GG3 disease. PATIENT SUMMARY: For patients with low-risk prostate cancer on active surveillance, the risk of progressing to grade group 3 disease is low with a stable magnetic resonance image (MRI) after 2?yr. Having higher prostate-specific antigen density increases the risk of progression, despite having a stable MRI.


Subject(s)
Prostatic Neoplasms , Watchful Waiting , Humans , Magnetic Resonance Imaging , Male , Neoplasm Grading , Prostatic Neoplasms/diagnostic imaging
20.
Sci Rep ; 11(1): 5662, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707581

ABSTRACT

OATP1B3 is expressed de novo in primary prostate cancer tissue and to a greater degree in prostate cancer metastases. Gadoxetate disodium is a substrate of OATP1B3, and its uptake has been shown to correlate with OATP1B3 expression in other cancers. We aimed to evaluate use of gadoxetate disodium to image prostate cancer and to track its utility as a biomarker. A single center open-label non-randomized pilot study recruited men with (1) localized, and (2) metastatic castration resistant prostate cancer (mCRPC). Gadoxetate disodium-enhanced MRI was performed at four timepoints post-injection. The Wilcoxon signed rank test was used to compare MRI contrast enhancement ratio (CER) pre-injection and post-injection. OATP1B3 expression was evaluated via immunohistochemistry (IHC) and a pharmacogenomic analysis of OATP1B3, NCTP and OATP1B1 was conducted. The mCRPC subgroup (n = 9) demonstrated significant enhancement compared to pre-contrast images at 20-, 40- and 60-min timepoints (p < 0.0078). The localized cancer subgroup (n = 11) demonstrated earlier enhancement compared to the mCRPC group, but no retention over time (p > 0.05). OATP1B3 expression on IHC trended higher contrast enhancement between 20-40 min (p ≤ 0.064) and was associated with contrast enhancement at 60 min (p = 0.0422). OATP1B1 haplotype, with N130D and V174A substitutions, impacted enhancement at 40-60 min (p ≤ 0.038). mCRPC lesions demonstrate enhancement after injection of gadoxetate disodium on MRI and retention over 60 min. As inter-individual variability in OATP1B3 expression and function has both predictive and prognostic significance, gadoxetate disodium has potential as a biomarker in prostate cancer.


Subject(s)
Gadolinium DTPA/chemistry , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Genotype , Humans , Male , Neoplasm Metastasis , Pilot Projects , Prostatic Neoplasms/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...