Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transplantation ; 108(5): 1142-1148, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38303109

ABSTRACT

BACKGROUND: HLA class II antigens, DR, DQ, and DP, comprised an α and ß chains, which typically combine, within the same isotype, to form the major histocompatibility complex:peptide complex. Interisotypic pairing is not commonly observed. Although reports of DQß:DRα heterodimers exist, the pairing was reported to be unstable and, therefore, not studied to any extent. METHODS: DQß:DRα single antigens were produced through transfectant cell lines and used to identify and characterize positive reactive human sera by a multiplex bead-based assay. RESULTS: Stable DQß:DRα transfectants were constructed. Cell surface staining with class II-specific monoclonal antibodies revealed that some DQB1 alleles appear to be more efficient in expressing DQß:DRα heterodimers. Interestingly, alleles within the same serological group varied in their efficiency of forming dimers on the cell surface. For example, DQß0601:DRα had the highest transfection and cell membrane expression efficiency among 16 common DQB1 alleles tested. In contrast, DQß0603:DRα-positive transfectants demonstrated minimal surface expression. Assembly of DQß0601:DRα was not affected by the presence of a DQα chain. DQß0601:DRα and DQß0603:DRα single-antigen beads were used to screen human sera. Positive sera were identified that reacted to the unique epitopes of DQß0601:DRα protein on the cell surface of the transfectants. CONCLUSIONS: Our studies have demonstrated that unique DQß:DRα heterodimers can be formed and are stably expressed on the cell surface. Such antigenic combinations, presented on single-antigen beads, demonstrated that patient sera can react with such heterodimers. Investigations on the potential clinical roles of antibodies against such interisotypic heterodimers are now possible.


Subject(s)
Transfection , Humans , HLA-DR Antigens/immunology , HLA-DR Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DQ beta-Chains/immunology , Protein Multimerization , Alleles , Animals
2.
J Am Soc Nephrol ; 13(2): 394-399, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11805167

ABSTRACT

X-linked hypophosphatemia (XLH) is an X-linked dominant disorder that is characterized by rachitic bone disease and hypophosphatemia due to renal phosphate transport defect. The candidate gene for XLH, PHEX, has recently been identified and found to share high homology with endopeptidases. PHEX is expressed in various tissues, including bones, and the available evidence today indicates that bones can release abnormal humoral factors that affect bone mineralization and proximal tubule phosphate transport in XLH. It was, therefore, hypothesized that the inactivating mutations of PHEX in bone may lead to the release of humoral factors and contribute to the phenotypic expression of the disease. To test this possibility, clones of MG-63 cells, a human osteoblast cell line, were produced and stably transfected with PHEX-antisense vectors, resulting in a decrease in PHEX expression at mRNA and protein levels. It was found that these antisense-transfected cells had impaired mineralization, with a decrease in 45Ca incorporation and calcification nodule formation. It was also found that the conditioned culture media collected from these antisense-transfected cells exhibited inhibitory activities on 45Ca incorporation by the nontransfected MG-63 cells and 32P uptake by the opossum kidney proximal tubular cells. The results of the study, therefore, provide strong evidence that supports the link between PHEX mutations and the pathogenesis of XLH.


Subject(s)
Oligonucleotides, Antisense/pharmacology , Osteoblasts/drug effects , Proteins/genetics , Animals , Calcium/metabolism , Cells, Cultured , Culture Media, Conditioned/pharmacology , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Minerals/metabolism , Opossums , Osteoblasts/physiology , PHEX Phosphate Regulating Neutral Endopeptidase , Phosphates/pharmacokinetics , Phosphorus/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...