Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(4): 1489-94, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11171978

ABSTRACT

Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76 Delta) ribozymes in D(2)O and H(2)O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76 Delta mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under k(cat)/K(M) conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (beta) of 0.51 was determined for the base-rescued reaction of C76 Delta. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage.


Subject(s)
Cytosine/metabolism , RNA, Catalytic/metabolism , Base Sequence , Buffers , Enzyme Inhibitors , Hepatitis Delta Virus/enzymology , Imidazoles , Kinetics , Molecular Sequence Data , Mutagenesis , Nucleic Acid Conformation , Protons , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL