Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(13): 5185-5193, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35311883

ABSTRACT

Nanocomposite metal oxide thin films exhibit promising qualities in the field of gas sensors due to the opportunities provided by the heterointerface formation. In this work, we present the synthesis of nitrogen doped mesoporous In2O3-ZnO nanocomposite thin films by a simple wet chemical method using urea as the nitrogen precursor. SEM investigation suggests the formation of mesoporous nanocomposite thin films, where the uniformity of the surface pore distribution depends on the relative proportion of In2O3 and ZnO in the composites. HRTEM investigation suggests the formation of sharp interfaces between N-In2O3 and N-ZnO grains in the nanocomposite thin films. The nanocomposite thin films have been tested for their ethanol sensing performance over an extensive range of temperatures, ethanol vapor concentrations and relative humidities. Nitrogen doped nanocomposite thin films with an equal proportion of In2O3 and ZnO exhibit excellent ethanol sensing performance at a reasonable operating temperature (∼94% at 200 °C for 50 ppm of ethanol), fast response time (∼two seconds), stability over time, enhanced resilience against humidity and selectivity to ethanol over various other volatile organic compounds. All the results indicated that nitrogen doped In2O3/ZnO nanocomposite thin films portray great possibilities in designing improved performance ethanol sensors.

2.
Nanotechnology ; 31(11): 115206, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31756729

ABSTRACT

We report the optical characteristics of relatively large sized (∼7.0-8.0 µm) but low aspect ratio Ge microdisks grown on a virtual Si0.5Ge0.5 substrate using molecular beam epitaxy following the Stranski-Krastanov growth mechanism. Grown microdisks with very low aspect ratio Ge islands exhibit direct band gap (∼0.8 eV) photoluminescence emission sustainable up to room temperature, enabled by the confinement of carriers into the microdisks. p-i-n diodes with an intrinsic layer containing Ge microdisks have been fabricated to study their emission and photoresponse characteristics at an optical communication wavelength of ∼1550 nm. A strong electroluminescence at 1550 nm has been achieved at low temperatures in the device for a very low threshold current density of 2.56 µA cm-2 due to the strong confinement of injected holes. The emission characteristics of the fabricated device with respect to the injected current density and temperature have been studied. Novel emission and optical modulation characteristics at 1550 nm of the fabricated p-i-n device containing Ge microdisks grown on a virtual SiGe substrate indicate its potential for Si CMOS compatible on-chip optical communications.

3.
Biosens Bioelectron ; 83: 361-7, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27153526

ABSTRACT

Reduced graphene oxide-yttria nanocomposite (rGO:Y) is applied as electrochemical genosensor platform for ultrahigh sensitive detection of breast cancer 1 (BRCA1) gene for the first time. The sensor is based on the sandwich assay in which gold nanoparticle cluster labeled reporter DNA hybridize to the target DNA. Glassy carbon electrode modified with rGO-yttria serves as the immobilization platform for capture probe DNA. The sensor exhibited a fine capability of sensing BRCA1 gene with linear range of 10attomolar (aM) to 1nanomolar (nM) and a detection limit of 5.95attomolar. The minimum distinguishable response concentration is down to the attomolar level with a high sensitivity and selectivity. We demonstrated that the use of rGO:Y modified electrode along with gold nanoparticle cluster (AuNPC) label leads to the highly sensitive electrochemical detection of BRCA1 gene.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Genes, BRCA1 , Graphite/chemistry , Nanocomposites/chemistry , Yttrium/chemistry , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...