Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Genes Cancer ; 15: 15-27, 2024.
Article in English | MEDLINE | ID: mdl-38323120

ABSTRACT

Ewing sarcoma is a cancer of bone and soft tissue in children and young adults that is driven by the EWS-ETS fusion transcription factor, most commonly EWS-FLI1. We previously reported that Ewing sarcoma harbors two populations of cells, the CD133high population displaying higher growth rate and the CD133low population displaying chemotherapy resistance. We now find that the ubiquitin-specific protease 1 (USP1) is a transcriptional target of the EWS-FLI1 fusion oncoprotein, expressed at high and low levels in the CD133high and the CD133low populations, respectively, and determines chemo-sensitivity. We also find that USP1 inhibits cdc42, increases EWS-FLI1 transcriptional output, and simulates Ewing sarcoma growth. We show that chemo-sensitization by USP1 is independent of cdc42. A pharmacological inhibitor of USP1 was able to activate cdc42 and inhibit Ewing sarcoma growth. These results uncover critical roles for USP1 in Ewing sarcoma, which regulates growth and chemo-sensitivity via distinct mechanisms.

2.
Cell Rep ; 42(2): 112103, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36773293

ABSTRACT

Retinoblastoma is a cancer of the infant retina primarily driven by loss of the Rb tumor suppressor gene, which is undruggable. Here, we report an autocrine signaling, mediated by secreted frizzled-related protein 2 (SFRP2), which suppresses nitric oxide and enables retinoblastoma growth. We show that coxsackievirus and adenovirus receptor (CXADR) is the cell-surface receptor for SFRP2 in retinoblastoma cells; that CXADR functions as a "dependence receptor," transmitting a growth-inhibitory signal in the absence of SFRP2; and that the balance between SFRP2 and CXADR determines nitric oxide production. Accordingly, high SFRP2 RNA expression correlates with high-risk histopathologic features in retinoblastoma. Targeting SFRP2 signaling by SFRP2-binding peptides or by a pharmacological inhibitor rapidly induces nitric oxide and profoundly inhibits retinoblastoma growth in orthotopic xenograft models. These results reveal a cytokine signaling pathway that regulates nitric oxide production and retinoblastoma cell proliferation and is amenable to therapeutic intervention.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Nitric Oxide , Secreted Frizzled-Related Proteins , Signal Transduction
3.
Mol Cancer Ther ; 22(4): 539-550, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36696581

ABSTRACT

Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines. Acquired resistance to TZ-1 was developed and characterized in sensitive Rh41 cells. The BRD4 inhibitor, JQ1, was evaluated as an agent to prevent acquired TZ-1 resistance in Rh41 cells. The phosphorylation status of receptor tyrosine kinases (RTK) was assessed. Sensitivity to TZ-1 in vivo was determined in Rh41 parental and TZ-1-resistant xenografts. Of 20 sarcoma cell lines, only Rh41 was sensitive to TZ-1. Cells intrinsically resistant to TZ-1 expressed multiple (>10) activated RTKs or a relatively less complex set of activated RTKs (∼5). TZ-1 decreased the phosphorylation of IGF-1R but had little effect on other phosphorylated RTKs in all resistant lines. TZ-1 rapidly induced activation of RTKs in Rh41 that was partially abrogated by knockdown of SOX18 and JQ1. Rh41/TZ-1 cells selected for acquired resistance to TZ-1 constitutively expressed multiple activated RTKs. TZ-1 treatment caused complete regressions in Rh41 xenografts and was significantly less effective against the Rh41/TZ-1 xenograft. Intrinsic resistance is a consequence of redundant signaling in pediatric sarcoma cell lines. Acquired resistance in Rh41 cells is associated with rapid induction of multiple RTKs, indicating a dynamic response to IGF-1R blockade and rapid development of resistance. The TZ-1 antibody had greater antitumor activity against Rh41 xenografts compared with other IGF-1R-targeted antibodies tested against this model.


Subject(s)
Nuclear Proteins , Sarcoma , Child , Humans , Transcription Factors , Receptor, IGF Type 1 , Sarcoma/drug therapy , Receptors, Somatomedin , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Cell Cycle Proteins , SOXF Transcription Factors
4.
Genes Cancer ; 13: 88-99, 2022.
Article in English | MEDLINE | ID: mdl-36533189

ABSTRACT

Ewing sarcoma is a cancer of bone and soft tissue in children driven by EWS::ETS fusion, most commonly EWS::FLI1. Because current cytotoxic chemotherapies are not improving the survival of those with metastatic or recurrent Ewing sarcoma cases, there is a need for novel and more effective targeted therapies. While EWS::FLI1 is the major driver of Ewing sarcoma, EWS::FLI1 has been difficult to target. A promising alternative approach is to identify and target the molecular vulnerabilities created by EWS::FLI1. Here we report that EWS::FLI1 induces the expression of Slit2, the ligand of Roundabout (Robo) receptors implicated in axon guidance and multiple other developmental processes. EWS::FLI1 binds to the Slit2 gene promoter and stimulates the expression of Slit2. Slit2 inactivates cdc42 and stabilizes the BAF chromatin remodeling complexes, enhancing EWS::FLI1 transcriptional output. Silencing of Slit2 strongly inhibited anchorage-dependent and anchorage-independent growth of Ewing sarcoma cells. Silencing of Slit2 receptors, Robo1 and Robo2, inhibited Ewing sarcoma growth as well. These results uncover a new role for Slit2 signaling in stimulating Ewing sarcoma growth and suggest that this pathway can be targeted therapeutically.

5.
Genes Cancer ; 12: 96-105, 2021.
Article in English | MEDLINE | ID: mdl-34966479

ABSTRACT

Ewing sarcoma is an aggressive cancer of bone and soft tissue in children. It is characterized by the chromosomal translocation between EWS and an Ets family transcription factor, most commonly FLI1. We recently reported that Ewing sarcoma depends on the autocrine signaling mediated by a cytokine, NELL2. NELL2 signaling stimulates the transcriptional output of EWS-FLI1 through the BAF chromatin remodeling complexes. While studying the impact of NELL2 silencing on Ewing sarcoma, we found that suppression of NELL2 signaling induces the expression of endogenous retroviruses (ERVs) and LINE-1 retrotransposons, an interferon response, and growth arrest. We determined that a histone methyltransferase, EZH2, is the critical downstream target of NELL2 signaling in suppressing ERVs, LINE-1, an interferon response, and growth arrest. We show that EZH2 inhibitors induce ERVs, LINE-1, and an interferon response in a variety of cancer types. These results uncover the role for NELL2-EZH2 signaling in suppressing endogenous virus-like agents and an antiviral response, and suggest the potential utility of EZH2 inhibitors in enhancing anti-tumor immunity.

6.
Cell Rep ; 36(1): 109254, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233189

ABSTRACT

BAF chromatin remodeling complexes play important roles in chromatin regulation and cancer. Here, we report that Ewing sarcoma cells are dependent on the autocrine signaling mediated by NELL2, a secreted glycoprotein that has been characterized as an axon guidance molecule. NELL2 uses Robo3 as the receptor to transmit critical growth signaling. NELL2 signaling inhibits cdc42 and upregulates BAF complexes and EWS-FLI1 transcriptional output. We demonstrate that cdc42 is a negative regulator of BAF complexes, inducing actin polymerization and complex disassembly. Furthermore, we identify NELL2highCD133highEWS-FLI1high and NELL2lowCD133lowEWS-FLI1low populations in Ewing sarcoma, which display phenotypes consistent with high and low NELL2 signaling, respectively. We show that NELL2, CD133, and EWS-FLI1 positively regulate each other and upregulate BAF complexes and cell proliferation in Ewing sarcoma. These results reveal a signaling pathway regulating critical chromatin remodeling complexes and cancer cell proliferation.


Subject(s)
Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , AC133 Antigen/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Chromatin Assembly and Disassembly , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Mice, SCID , Oncogene Proteins, Fusion/metabolism , Phenotype , Polymerization , Protein Subunits/metabolism , Proteomics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Receptors, Cell Surface/metabolism , Sarcoma, Ewing/genetics , Up-Regulation
7.
Elife ; 102021 07 08.
Article in English | MEDLINE | ID: mdl-34236315

ABSTRACT

MGA, a transcription factor and member of the MYC network, is mutated or deleted in a broad spectrum of malignancies. As a critical test of a tumor suppressive role, we inactivated Mga in two mouse models of non-small cell lung cancer using a CRISPR-based approach. MGA loss significantly accelerated tumor growth in both models and led to de-repression of non-canonical Polycomb ncPRC1.6 targets, including genes involved in metastasis and meiosis. Moreover, MGA deletion in human lung adenocarcinoma lines augmented invasive capabilities. We further show that MGA-MAX, E2F6, and L3MBTL2 co-occupy thousands of promoters and that MGA stabilizes these ncPRC1.6 subunits. Lastly, we report that MGA loss also induces a pro-growth effect in human colon organoids. Our studies establish MGA as a bona fide tumor suppressor in vivo and suggest a tumor suppressive mechanism in adenocarcinomas resulting from widespread transcriptional attenuation of MYC and E2F target genes mediated by MGA-MAX associated with a non-canonical Polycomb complex.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Epigenetic Repression , Polycomb-Group Proteins/genetics , Adenocarcinoma of Lung/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Disease Progression , Female , Humans , Male , Mice , Neoplasm Invasiveness/genetics , Polycomb-Group Proteins/metabolism
8.
Cell Rep ; 33(5): 108332, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147457

ABSTRACT

We report here that the autocrine signaling mediated by growth and differentiation factor 6 (GDF6), a member of the bone morphogenetic protein (BMP) family of cytokines, maintains Ewing sarcoma growth by preventing Src hyperactivation. Surprisingly, Ewing sarcoma depends on the prodomain, not the BMP domain, of GDF6. We demonstrate that the GDF6 prodomain is a ligand for CD99, a transmembrane protein that has been widely used as a marker of Ewing sarcoma. The binding of the GDF6 prodomain to the CD99 extracellular domain results in recruitment of CSK (C-terminal Src kinase) to the YQKKK motif in the intracellular domain of CD99, inhibiting Src activity. GDF6 silencing causes hyperactivation of Src and p21-dependent growth arrest. We demonstrate that two GDF6 prodomain mutants linked to Klippel-Feil syndrome are hyperactive in CD99-Src signaling. These results reveal a cytokine signaling pathway that regulates the CSK-Src axis and cancer cell proliferation and suggest the gain-of-function activity for disease-causing GDF6 mutants.


Subject(s)
12E7 Antigen/metabolism , Growth Differentiation Factor 6/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Signal Transduction , src-Family Kinases/metabolism , Animals , CSK Tyrosine-Protein Kinase/metabolism , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Growth Differentiation Factor 6/chemistry , Humans , Klippel-Feil Syndrome/genetics , Mice, SCID , Mutation/genetics , Oncogene Proteins, Fusion/metabolism , Protein Domains , Proteome/metabolism , Proteomics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Transcription, Genetic
9.
Cell Chem Biol ; 27(5): 538-550.e7, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32101699

ABSTRACT

Mitochondrial D2HGDH and L2HGDH catalyze the oxidation of D-2-HG and L-2-HG, respectively, into αKG. This contributes to cellular homeostasis in part by modulating the activity of αKG-dependent dioxygenases. Signals that control the expression/activity of D2HGDH/L2HGDH are presumed to broadly influence physiology and pathology. Using cell and mouse models, we discovered that MYC directly induces D2HGDH and L2HGDH transcription. Furthermore, in a manner suggestive of D2HGDH, L2HGDH, and αKG dependency, MYC activates TET enzymes and RNA demethylases, and promotes their nuclear localization. Consistent with these observations, in primary B cell lymphomas MYC expression positively correlated with enhancer hypomethylation and overexpression of lymphomagenic genes. Together, these data provide additional evidence for the role of mitochondria metabolism in influencing the epigenome and epitranscriptome, and imply that in specific contexts wild-type TET enzymes could demethylate and activate oncogenic enhancers.


Subject(s)
Alcohol Oxidoreductases/genetics , Epigenome , Lymphoma, B-Cell/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcriptional Activation , Animals , Cell Line , Female , Humans , Male , Mice, Inbred C57BL , Transcriptome , Tumor Cells, Cultured
10.
Genes Cancer ; 8(11-12): 762-770, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29321818

ABSTRACT

Ewing sarcoma is an aggressive cancer of bone and soft tissue in children with poor prognosis. It is characterized by the chromosomal translocation between EWS and an Ets family transcription factor, most commonly FLI-1. EWS-FLI-1 fusion accounts for 85% of Ewing sarcoma cases. EWS-FLI-1 regulates the expression of a number of genes important for sarcomagenesis, can transform NIH3T3 and C3H10T1/2 cells, and is necessary for proliferation and tumorigenicity of Ewing sarcoma cells, suggesting that EWS-FLI-1 is the causative oncoprotein. Here we report that EWS-FLI-1 induces the expression of pappalysin-1 (PAPPA), a cell surface protease that degrades IGF binding proteins (IGFBPs) and increases the bioavailability of IGF. EWS-FLI-1 binds to the pappalysin-1 gene promoter and stimulates the expression of pappalysin-1, leading to degradation of IGFBPs and enhanced IGF signaling. Silencing of pappalysin-1 strongly inhibited anchorage-dependent and anchorage-independent growth as well as xenograft tumorigenicity of Ewing sarcoma cells. These results suggest that EWS-FLI-1 creates a cell surface microenvironment conducive to IGF signaling by inducing pappalysin-1, which emerged as a novel target to inhibit IGF signaling in Ewing sarcoma.

11.
Genes Cancer ; 7(3-4): 125-35, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27382436

ABSTRACT

Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma.

12.
Exp Gerontol ; 73: 1-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26547052

ABSTRACT

Cellular senescence has been proposed to play critical roles in tumor suppression and organismal aging, but the molecular mechanism of senescence remains incompletely understood. Here we report that a putative lysosomal carbohydrate efflux transporter, Spinster, induces cellular senescence in human primary fibroblasts. Administration of d-galactose synergistically enhanced Spinster-induced senescence and this synergism required the transporter activity of Spinster. Intracellular d-galactose is metabolized to galactose-1-phosphate by galactokinase. Galactokinase-deficient fibroblasts, which accumulate intracellular d-galactose, displayed increased baseline senescence. Senescence of galactokinase-deficient fibroblasts was further enhanced by d-galactose administration and was diminished by restoration of wild-type galactokinase expression. Silencing galactokinase in normal fibroblasts also induced senescence. These results suggest a role for intracellular galactose in the induction of cellular senescence.


Subject(s)
Cellular Senescence/physiology , Galactose/physiology , Adaptor Proteins, Signal Transducing/pharmacology , Adaptor Proteins, Signal Transducing/physiology , Cells, Cultured , Cellular Senescence/drug effects , Drug Synergism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Galactokinase/deficiency , Galactokinase/physiology , Galactose/pharmacology , Humans , Lysosomes/metabolism , Membrane Proteins/pharmacology , Membrane Proteins/physiology
13.
Genes Cancer ; 6(11-12): 452-61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26807198

ABSTRACT

Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly FLI-1. The EWS-FLI-1 fusion oncogene is widely believed to play a central role in Ewing sarcoma. The EWS-FLI-1 gene product regulates the expression of a number of genes important for cancer progression, can transform mouse cells such as NIH3T3 and C3H10T1/2, and is necessary for proliferation and tumorigenicity of Ewing sarcoma cells, suggesting that EWS-FLI-1 is the causative oncogene. However, a variety of evidence also suggest that EWS-FLI-1 alone cannot fully explain the Ewing sarcomagenesis. Here we report that FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, is frequently expressed in Ewing sarcoma. We present evidence suggesting that endogenous FLI-1-EWS is required for Ewing sarcoma growth and that FLI-1-EWS cooperates with EWS-FLI-1 in human mesenchymal stem cells, putative cells of origin of Ewing sarcoma, through abrogation of the proliferation arrest induced by EWS- FLI-1.

14.
J Proteome Res ; 13(8): 3783-91, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24999758

ABSTRACT

Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly Fli-1. EWS-Fli-1 fusion accounts for 85% of cases. The growth and survival of Ewing sarcoma cells are critically dependent on EWS-Fli-1. A large body of evidence has established that EWS-Fli-1 functions as a DNA-binding transcription factor that regulates the expression of a number of genes important for cell proliferation and transformation. However, little is known about the biochemical properties of the EWS-Fli-1 protein. We undertook a series of proteomic analyses to dissect the EWS-Fli-1 interactome. Employing a proximity-dependent biotinylation technique, BioID, we identified cation-independent mannose 6-phosphate receptor (CIMPR) as a protein located in the vicinity of EWS-Fli-1 within a cell. CIMPR is a cargo that mediates the delivery of lysosomal hydrolases from the trans-Golgi network to the endosome, which are subsequently transferred to the lysosomes. Further molecular cell biological analyses uncovered a role for lysosomes in the turnover of the EWS-Fli-1 protein. We demonstrate that an mTORC1 active-site inhibitor, torin 1, which stimulates the TFEB-lysosome pathway, can induce the degradation of EWS-Fli-1, suggesting a potential therapeutic approach to target EWS-Fli-1 for degradation.


Subject(s)
Lysosomes/metabolism , Oncogene Proteins, Fusion/physiology , Proteomics , Proto-Oncogene Protein c-fli-1/physiology , RNA-Binding Protein EWS/physiology , Sarcoma, Ewing/drug therapy , Biotinylation , Catalytic Domain , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/metabolism , Proteome/metabolism , Sarcoma, Ewing/pathology , TOR Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Transcription Factors/metabolism , trans-Golgi Network/metabolism
15.
J Biol Chem ; 289(32): 22221-36, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24951594

ABSTRACT

Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels.


Subject(s)
Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism , Adult , Aged , Aged, 80 and over , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Disease Progression , Down-Regulation , Female , Genes, myc , HEK293 Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , K562 Cells , Middle Aged , Models, Biological , Protein Interaction Domains and Motifs , Proteolysis , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Rats , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Transcriptional Activation , Two-Hybrid System Techniques
16.
Neuro Oncol ; 16(2): 179-90, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24305703

ABSTRACT

Background Diffusely infiltrative growth of human astrocytic gliomas is one of the major obstacles to successful tumor therapy. Thorough insights into the molecules and pathways signaling glioma cell invasion thus appear of major relevance for the development of targeted and individualized therapies. By miRNA expression profiling of microdissected human tumor biopsy specimens we identified miR-328 as one of the main miRNAs upregulated in invading glioma cells in vivo and further investigated its role in glioma pathogenesis. Methods We employed miRNA mimics and inhibitors to functionally characterize miR-328, 3' untranslated region luciferase assays, and T-cell factor/lymphoid enhancer factor reporter assays to pinpoint miR-328 targets and signaling pathways, and analyzed miR-328 expression in a large panel of gliomas. Results First, we corroborated the invasion-promoting role of miR-328 in A172 and TP365MG glioma cells. Secreted Frizzled-related protein 1 (SFRP1), an inhibitor of Wnt signaling, was then pinpointed as a direct miR-328 target. SFRP1 expression is of prognostic relevance in gliomas with reduced expression, being associated with significantly lower overall patient survival in both the Repository of Molecular Brain Neoplasia Data (REMBRANDT) and The Cancer Genome Atlas. Of note, miR-328 regulated both SFRP1 protein expression levels and Wnt signaling pathway activity. Finally, in human glioma tissues miR-328 appeared to account for the downregulation of SFRP1 preferentially in lower-grade astrocytic gliomas and was inversely related to SFRP1 promoter hypermethylation. Conclusion Taken together, we report on a novel molecular miR-328-dependent mechanism that via SFRP1 inhibition and Wnt activation contributes to the infiltrative glioma phenotype at already early stages of glioma progression, with unfavorable prognostic implications for the final outcome of the disease.


Subject(s)
Brain Neoplasms/pathology , Cell Movement , Gene Expression Regulation, Neoplastic , Glioma/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , MicroRNAs/genetics , Wnt Proteins/metabolism , Adolescent , Adult , Aged , Apoptosis , Blotting, Western , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Cell Proliferation , DNA Methylation , Female , Glioma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Immunoenzyme Techniques , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Prognosis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Young Adult
17.
Mol Cell Biol ; 32(21): 4388-99, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22927647

ABSTRACT

Cellular senescence has emerged as a critical tumor suppressive mechanism in recent years, but relatively little is known about how senescence occurs. Here, we report that secreted Frizzled-related protein 1 (SFRP1), a secreted antagonist of Wnt signaling, is oversecreted upon cellular senescence caused by DNA damage or oxidative stress. SFRP1 is necessary for stress-induced senescence caused by these factors and is sufficient for the induction of senescence phenotypes. We present evidence suggesting that SFRP1 functions as a secreted mediator of senescence through inhibition of Wnt signaling and activation of the retinoblastoma (Rb) pathway and that cancer-associated SFRP1 mutants are defective for senescence induction.


Subject(s)
Cellular Senescence , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Retinoblastoma Protein/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway , Cell Line, Tumor , Cell Proliferation , DNA Damage , Fibroblasts , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mutation , Oxidative Stress , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Signal Transduction , Wnt Proteins/genetics
18.
Proc Natl Acad Sci U S A ; 109(30): 12052-7, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22778398

ABSTRACT

Cellular senescence is widely believed to play a key role in tumor suppression, but the molecular pathways that regulate senescence are only incompletely understood. By using a secretome proteomics approach, we identified insulin-like growth factor binding protein 3 (IGFBP3) as a secreted mediator of breast cancer senescence upon chemotherapeutic drug treatment. The senescence-inducing activity of IGFBP3 is inhibited by tissue-type plasminogen activator-mediated proteolysis, which is counteracted by plasminogen activator inhibitor 1 (PAI-1), another secreted mediator of senescence. We demonstrate that IGFBP3 is a critical downstream target of PAI-1-induced senescence. These results suggest a role for an extracellular cascade of secreted proteins in the regulation of cellular senescence.


Subject(s)
Cellular Senescence/physiology , Insulin-Like Growth Factor Binding Protein 3/metabolism , Neoplasms/drug therapy , Plasminogen Activator Inhibitor 1/metabolism , Proteolysis/drug effects , Stress, Physiological/physiology , Tissue Plasminogen Activator/pharmacology , Analysis of Variance , Cell Line, Tumor , Culture Media/chemistry , DNA Primers/genetics , Doxorubicin/pharmacology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunohistochemistry , Neoplasms/metabolism , Neoplasms/physiopathology , Proteomics/methods , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tissue Plasminogen Activator/metabolism , Tumor Cells, Cultured , beta-Galactosidase
19.
Arch Biochem Biophys ; 518(2): 103-10, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22234250

ABSTRACT

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor is associated with renal carcinoma, hemangioblastoma and pheochromocytoma. The VHL protein is a component of a ubiquitin ligase complex that ubiquitinates and degrades hypoxia inducible factor-α (HIF-α). Degradation of HIF-α by VHL is proposed to suppress tumorigenesis and tumor angiogenesis. Several lines of evidence also suggest important roles for HIF-independent VHL functions in tumor suppression and other biological processes. Using GST-VHL pull-down experiment and mass spectrometry, we detected an interaction between VHL and heterochromatin protein 1 (HP1). We identified a conserved HP1-binding motif (PXVXL) in the ß domain of VHL, which is disrupted in a renal carcinoma-associated P81S mutant. We show that the VHL P81S mutant displays reduced binding to HP1, yet retains the ability to interact with elongin B, elongin C, and cullin 2 and is fully capable of degrading HIF-α. We also demonstrate that HP1 increases the chromatin association of VHL. These results suggest a role for the VHL-HP1 interaction in VHL chromatin targeting.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Neoplasms/metabolism , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Amino Acid Motifs , Amino Acid Substitution , Animals , Cell Line , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Cullin Proteins/genetics , Cullin Proteins/metabolism , Elongin , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kidney Neoplasms/genetics , Mice , Mutation, Missense , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitination/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
20.
J Proteome Res ; 10(11): 5175-82, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21942715

ABSTRACT

The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex containing elongin B, elongin C, cullin 2, and Rbx1, which acts as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the alpha subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. Several lines of evidence also suggest important roles for HIF-independent VHL functions in the maintenance of primary cilium, extracellular matrix formation, and tumor suppression. We undertook a series of proteomic analyses to gain a comprehensive picture of the VHL-interacting proteins. We found that the ARF tumor suppressor interacts with VHL30, a longer VHL isoform, but not with VHL19, a shorter VHL isoform. ARF was found to release VHL30 from the E3 ligase complex, promoting the binding of VHL30 to a protein arginine methyltransferase, PRMT3. Our analysis of the VHL19 interactome also uncovered that VHL19 displays an affinity to collagens and their biosynthesis enzymes.


Subject(s)
Protein Interaction Mapping , Protein-Arginine N-Methyltransferases/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Arginine/metabolism , Cell Line, Tumor , Collagen/biosynthesis , Collagen/metabolism , Cullin Proteins/metabolism , Elongin , HEK293 Cells , Humans , Methylation , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Binding , Protein Isoforms/metabolism , Proteomics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...