Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Eng Au ; 3(1): 37-44, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36820227

ABSTRACT

Plastic production has steadily increased worldwide at a staggering pace. The polymer industry is, unfortunately, C-intensive, and accumulation of plastics in the environment has become a major issue. Plastic waste valorization into fresh monomers for production of virgin plastics can reduce both the consumption of fossil feedstocks and the environmental pollution, making the plastic economy more sustainable. Recently, the chemical recycling of plastics has been studied as an innovative solution to achieve a fully sustainable cycle. In this way, plastics are depolymerized to their monomers or/and oligomers appropriate for repolymerization, closing the loop. In this work, PET was depolymerized to its bis(2-hydroxyethyl) terephthalate (BHET) monomer via glycolysis, using ethylene glycol (EG) in the presence of niobia-based catalysts. Using a sulfated niobia catalyst treated at 573 K, we obtained 100% conversion of PET and 85% yield toward BHET at 195 °C in 220 min. This approach allows recycling of the PET at reasonable conditions using an inexpensive and nontoxic material as a catalyst.

2.
Chem Commun (Camb) ; 59(6): 756-759, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541631

ABSTRACT

Epoxidation of dicyclopentadiene (DCPD) is studied on a series of TiO2 catalysts using hydrogen peroxide as an oxidant. DCPD derivatives have applications in several areas including polymer, pharmaceutical and pesticide products. The control of selectivity leading to the desired product is important for many of these applications. Using experimental and computational studies, we show that the surface crystalline phases of TiO2 play crucial roles not only in the formation of peroxo species but also in the selective epoxidation of two different CC double bonds in DCPD.


Subject(s)
Hydrogen Peroxide , Titanium , Hydrogen Peroxide/chemistry , Catalysis
3.
ACS Appl Mater Interfaces ; 14(38): 43749-43758, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121119

ABSTRACT

As the most studied two-dimensional (2D) material from the MXene family, Ti3C2Tx has constantly gained interest from academia and industry. Ti3C2Tx MXene has the highest electrical conductivity (up to 24,000 S cm-1) and one of the highest stiffness values with a Young's modulus of ∼ 334 GPa among water-dispersible conductive 2D materials. The negative surface charge of MXene helps to disperse it well in aqueous and other polar solvents. This solubility across a wide range of solvents, excellent interface interaction, tunable surface functionality, and stability with other organic/polymeric materials combined with the layered structure of Ti3C2Tx MXene make it a promising material for anticorrosion coatings. While there are many reviews on Ti3C2Tx MXene polymer composites for catalysis, flexible electronics, and energy storage, to our knowledge, no review has been published yet on MXenes' anticorrosion applications. In this brief report, we summarize the current progress and the development of Ti3C2Tx polymer composites for anticorrosion. We also provide an outlook and discussion on possible ways to improve the exploitation of Ti3C2Tx polymer composites as anticorrosive materials. Finally, we provide a perspective beyond Ti3C2Tx MXene composition for the development of future anticorrosion coatings.

4.
ACS Sustain Chem Eng ; 9(44): 14777-14788, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34777925

ABSTRACT

One of the crucial steps for the conversion of CO2 into polymers is the catalytic formate to oxalate coupling reaction (FOCR). Formate can be obtained from the (electro)catalytic reduction of CO2, while oxalate can be further processed toward building blocks for modern plastics. In its 175 year history, multiple parameters for the FOCR have been suggested to be of importance. Yet, no comprehensive understanding considering all those parameters is available. Hence, we aim to assess the relative impact of all those parameters and deduce the optimal reaction conditions for the FOCR. We follow a systematic two-stage approach in which we first evaluate the most suitable categorical variables of catalyst, potential poisons, and reaction atmospheres. In the second stage, we evaluate the impact of the continuous variables temperature, reaction time, catalyst loading, and active gas removal within previously proposed ranges, using a response surface modeling methodology. We found KOH to be the most suitable catalyst, and it allows yields of up to 93%. Water was found to be the strongest poison, and its efficient removal increased oxalate yields by 35%. The most promising reaction atmosphere is hydrogen, with the added benefit of being equal to the gas produced in the reaction. The temperature has the highest impact on the reaction, followed by reaction time and purge rates. We found no significant impact of catalyst loading on the reaction within the ranges reported previously. This research provides a clear and concise multiparameter optimization of the FOCR and provides insight into the reaction cascade involving the formation and decomposition of oxalates from formate.

5.
Adv Sci (Weinh) ; 8(23): e2102884, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34693659

ABSTRACT

Carbon-based single-atom catalysts (SACs) with well-defined and homogeneously dispersed metal-N4 moieties provide a great opportunity for CO2 reduction. However, controlling the binding strength of various reactive intermediates on catalyst surface is necessary to enhance the selectivity to a desired product, and it is still a challenge. In this work, the authors prepared Sn SACs consisting of atomically dispersed SnN3 O1 active sites supported on N-rich carbon matrix (Sn-NOC) for efficient electrochemical CO2 reduction. Contrary to the classic Sn-N4 configuration which gives HCOOH and H2 as the predominant products, Sn-NOC with asymmetric atomic interface of SnN3 O1 gives CO as the exclusive product. Experimental results and density functional theory calculations show that the atomic arrangement of SnN3 O1 reduces the activation energy for *COO and *COOH formation, while increasing energy barrier for HCOO* formation significantly, thereby facilitating CO2 -to-CO conversion and suppressing HCOOH production. This work provides a new way for enhancing the selectivity to a specific product by controlling individually the binding strength of each reactive intermediate on catalyst surface.

6.
ChemSusChem ; 14(18): 3636-3664, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34324259

ABSTRACT

To quickly and drastically reduce CO2 emissions and meet our ambitions of a circular future, we need to develop carbon capture and storage (CCS) and carbon capture and utilization (CCU) to deal with the CO2 that we produce. While we have many alternatives to replace fossil feedstocks for energy generation, for materials such as plastics we need carbon. The ultimate circular carbon feedstock would be CO2 . A promising route is the electrochemical reduction of CO2 to formic acid derivatives that can subsequently be converted into oxalic acid. Oxalic acid is a potential new platform chemical for material production as useful monomers such as glycolic acid can be derived from it. This work is part of the European Horizon 2020 project "Ocean" in which all these steps are developed. This Review aims to highlight new developments in oxalic acid production processes with a focus on CO2 -based routes. All available processes are critically assessed and compared on criteria including overall process efficiency and triple bottom line sustainability.

7.
ACS Sustain Chem Eng ; 9(14): 4957-4966, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33868834

ABSTRACT

MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.

8.
ChemSusChem ; 14(6): 1427, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33656272

ABSTRACT

Invited for this month's cover are the Industrial Sustainable Chemistry group of Prof. Dr Gert-Jan M. Gruter and the Catalysis Engineering group of Dr. Raveendran Shiju at the University of Amsterdam. The image shows a full cycle from CO2 to polymers via several steps. The work reports the use of superbases in suitable environments to improve the formate coupling step by drastically lowering the reaction temperature and times whilst achieving higher yields. The Full Paper itself is available at 10.1002/cssc.202002725.

9.
ChemSusChem ; 14(6): 1517-1523, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33427392

ABSTRACT

An interesting contribution to solving the climate crisis involves the use of CO2 as a feedstock for monomers to produce sustainable plastics. In the European Horizon 2020 project "OCEAN" a continuous multistep process from CO2 to oxalic acid and derivatives is developed, starting with the electrochemical reduction of CO2 to potassium formate. The subsequent formate-to-oxalate coupling is a reaction that has been studied and commercially used for over 150 years. With the introduction of superbases as catalysts under moisture-free conditions unprecedented improvements were shown for the formate coupling reaction. With isotopic labelling experiments the presence of carbonite as an intermediate was proven during the reaction, and with a unique operando set-up the kinetics were studied. Ultimately, the required reaction temperature could be dropped from 400 to below 200 °C, and the reaction time could be reduced from 10 to 1 min whilst achieving 99 % oxalate yield.

10.
ACS Sustain Chem Eng ; 8(47): 17397-17407, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33282570

ABSTRACT

CO2 is a promising renewable, cheap, and abundant C1 feedstock for producing valuable chemicals, such as CO and methanol. In conventional reactors, because of thermodynamic constraints, converting CO2 to methanol requires high temperature and pressure, typically 250 °C and 20 bar. Nonthermal plasma is a better option, as it can convert CO2 at near-ambient temperature and pressure. Adding a catalyst to such plasma setups can enhance conversion and selectivity. However, we know little about the effects of catalysts in such systems. Here, we study CO2 hydrogenation in a dielectric barrier discharge plasma-catalysis setup under ambient conditions using MgO, γ-Al2O3, and a series of Co x O y /MgO catalysts. While all three catalyst types enhanced CO2 conversion, Co x O y /MgO gave the best results, converting up to 35% of CO2 and reaching the highest methanol yield (10%). Control experiments showed that the basic MgO support is more active than the acidic γ-Al2O3, and that MgO-supported cobalt oxide catalysts improve the selectivity toward methanol. The methanol yield can be tuned by changing the metal loading. Overall, our study shows the utility of plasma catalysis for CO2 conversion under mild conditions, with the potential to reduce the energy footprint of CO2-recycling processes.

11.
Adv Mater ; 32(52): e2003999, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33191547

ABSTRACT

Forging customizable compounds into arbitrary shapes and structures has the potential to revolutionize functional materials, where independent control over shape and composition is essential. Current self-assembly strategies allow impressive levels of control over either shape or composition, but not both, as self-assembly inherently entangles shape and composition. Herein, independent control over shape and composition is achieved by chemical conversion reactions on nanocrystals, which are first self-assembled in nanocomposites with programmable microscopic shapes. The multiscale character of nanocomposites is crucial: nanocrystals (5-50 nm) offer enhanced chemical reactivity, while the composite layout accommodates volume changes of the nanocrystals (≈25%), which together leads to complete chemical conversion with full shape preservation. These reactions are surprisingly materials agnostic, allowing a large diversity of chemical pathways, and development of conversion pathways yielding a wide selection of shape-controlled transition metal chalcogenides (cadmium, manganese, iron, and nickel oxides and sulfides). Finally, the versatility and application potential of this strategy is demonstrated by assembling: 1) a scalable and highly reactive nickel catalyst for the dry reforming of butane, 2) an agile magnetic-controlled particle, and 3) an electron-beam-controlled reversible microactuator with sub-micrometer precision. Previously unimaginable customization of shape and composition is now achievable for assembling advanced functional components.

12.
ACS Catal ; 10(7): 3958-3967, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32953234

ABSTRACT

Two-dimensional (2D) transition metal nanosheets are promising catalysts because of the enhanced exposure of the active species compared to their 3D counterparts. Here, we report a simple, scalable, and reproducible strategy to prepare 2D phosphate nanosheets by forming a layered structure in situ from phytic acid (PTA) and transition metal precursors. Controlled combustion of the organic groups of PTA results in interlayer carbon, which keeps the layers apart during the formation of phosphate, and the removal of this carbon results in ultrathin nanosheets with controllable layers. Applying this concept to vanadyl phosphate synthesis, we show that the method yields 2D ultrathin nanosheets of the orthorhombic ß-form, exposing abundant V4+/V5+ redox sites and oxygen vacancies. We demonstrate the high catalytic activity of this material in the vapor-phase aerobic oxidation of ethyl lactate to ethyl pyruvate. Importantly, these ß-VOPO4 compounds do not get hydrated, thereby reducing the competing hydrolysis reaction by water byproducts. The result has superior selectivity to ethyl pyruvate compared to analogous vanadyl phosphates. The catalysts are highly stable, maintaining a steady-state conversion of ∼90% (with >80% selectivity) for at least 80 h on stream. This "self-exfoliated" synthesis protocol opens opportunities for preparing structurally diverse metal phosphates for catalysis and other applications.

13.
ChemSusChem ; 13(23): 6401-6408, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32945628

ABSTRACT

MAX (Mn+1 AXn ) phases are layered carbides or nitrides with a high thermal and mechanical bulk stability. Recently, it was shown that their surface structure can be modified to form a thin non-stoichiometric oxide layer, which can catalyze the oxidative dehydrogenation of butane. Here, the use of a Ti2 AlC MAX phase as a support for cobalt oxide was explored for the dry reforming of butane with CO2 , comparing this new catalyst to more traditional materials. The catalyst was active and selective to synthesis gas. Although the surface structure changed during the reaction, the activity remained stable. Under the same conditions, a titania-supported cobalt oxide catalyst gave low activity and stability due to the agglomeration of cobalt oxide particles. The Co3 O4 /Al2 O3 catalyst was active, but the acidic surface led to a faster deactivation. The less acidic surface of the Ti2 AlC was better at inhibiting coke formation. Thanks to their thermal stability and acid-base properties, MAX phases are promising supports for CO2 conversion reactions.

14.
Adv Sci (Weinh) ; 7(5): 1902126, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154069

ABSTRACT

Although carbon itself acts as a catalyst in various reactions, the classical carbon materials (e.g., activated carbons, carbon aerogels, carbon black, carbon fiber, etc.) usually show low activity, stability, and oxidation resistance. With the recent availability of nanocarbon catalysts, the application of carbon materials in catalysis has gained a renewed momentum. The research is concentrated on tailoring the surface chemistry of nanocarbon materials, since the pristine carbons in general are not active for heterogeneous catalysis. Surface functionalization, doping with heteroatoms, and creating defects are the most used strategies to make efficient catalysts. However, the nature of the catalytic active sites and their role in determining the activity and selectivity is still not well understood. Herein, the types of active sites reported for several mainstream nanocarbons, including carbon nanotubes, graphene-based materials, and 3D porous nanocarbons, are summarized. Knowledge about the active sites will be beneficial for the design and synthesis of nanocarbon catalysts with improved activity, selectivity, and stability.

15.
Chem Sci ; 11(40): 11024-11029, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-34123192

ABSTRACT

Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined "empty areas" surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the "empty space" is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.

16.
Angew Chem Int Ed Engl ; 58(48): 17273-17276, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31536672

ABSTRACT

We present a new device for quantifying gases or gas mixtures based on the simple principle of bubble counting. With this device, we can follow reaction kinetics down to volume step sizes of 8-12 µL. This enables the accurate determination of both time and size of these gas quanta, giving a very detailed kinetic analysis. We demonstrate this method and device using ammonia borane hydrolysis as a model reaction, obtaining Arrhenius plots with over 300 data points from a single experiment. Our device not only saves time and avoids frustration, but also offers more insight into reaction kinetics and mechanistic studies. Moreover, its simplicity and low cost open opportunities for many lab applications.

17.
ChemSusChem ; 12(17): 3896-3914, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31166079

ABSTRACT

One of the main initiatives for fighting climate change is to use carbon dioxide as a resource instead of waste. In this respect, thermocatalytic carbon dioxide hydrogenation to high-added-value chemicals is a promising process. Among the products of this reaction (alcohols, alkanes, olefins, or aromatics), light olefins are interesting because they are building blocks for making polymers, as well as other important chemicals. Olefins are mainly produced from fossil fuel sources, but the increasing demand of plastics boosts the need to develop more sustainable synthetic routes. This review gives a critical overview of the most recent achievements in direct carbon dioxide hydrogenation to light olefins, which can take place through two competitive routes: the modified Fischer-Tropsch synthesis and methanol-mediated synthesis. Both routes are compared in terms of catalyst development, reaction performance, and reaction mechanisms. Furthermore, practical aspects of the commercialization of this reaction, such as renewable hydrogen production and carbon dioxide capture, compression, and transport, are discussed. It is concluded that, to date, the catalysts used in the carbon dioxide hydrogenation reaction give a wide product distribution, which reduces the specific selectivity to lower olefins. More efforts are needed to reach better control of the C/H surface ratio and interactions within the functionalities of the catalyst, as well as understanding the reaction mechanism and avoiding deactivation. Renewable H2 production and carbon dioxide capture and transport technologies are being developed, although they are currently still too expensive for industrial application.

18.
J Biotechnol ; 291: 52-60, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30550957

ABSTRACT

In this study, two stereocomplementary ω-transaminases from Arthrobacter sp. (AsR-ωTA) and Chromobacterium violaceum (Cv-ωTA) were immobilized via iron cation affinity binding onto polymer-coated controlled porosity glass beads (EziG™). The immobilization procedure was studied with different types of carrier materials and immobilization buffers of varying compositions, concentrations, pHs and cofactor (PLP) concentrations. Notably, concentrations of PLP above 0.1 mM were correlated with a dramatic decrease of the immobilization yield. The highest catalytic activity, along with quantitative immobilization, was obtained in MOPS buffer (100 mM, pH 8.0, PLP 0.1 mM, incubation time 2 h). Leaching of the immobilized enzyme was not observed within 3 days of incubation. EziG-immobilized AsR-ωTA and Cv-ωTA retained elevated activity when tested for the kinetic resolution of rac-α-methylbenzylamine (rac-α-MBA) in single batch experiments. Recycling studies demonstrated that immobilized EziG3-AsR-ωTA could be recycled for at least 16 consecutive cycles (15 min per cycle) and always affording quantitative conversion (TON ca. 14,400). Finally, the kinetic resolution of rac-α-MBA with EziG3-AsR-ωTA was tested in a continuous flow packed-bed reactor (157 µL reactor volume), which produced more than 5 g of (S)-α-MBA (>49% conversion, >99% ee) in 96 h with no detectable loss of catalytic activity. The calculated TON was more than 110,000 along with a space-time yield of 335 g L-1 h-1.


Subject(s)
Enzymes, Immobilized/chemistry , Phenethylamines/chemistry , Transaminases/chemistry , Arthrobacter/enzymology , Biocatalysis , Chromobacterium/enzymology , Glass/chemistry , Iron/chemistry , Polymers/chemistry , Porosity
19.
ACS Catal ; 8(3): 2365-2374, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29527403

ABSTRACT

The direct oxidative dehydrogenation of lactates with molecular oxygen is a "greener" alternative for producing pyruvates. Here we report a one-pot synthesis of mesoporous vanadia-titania (VTN), acting as highly efficient and recyclable catalysts for the conversion of ethyl lactate to ethyl pyruvate. These VTN materials feature high surface areas, large pore volumes, and high densities of isolated vanadium species, which can expose the active sites and facilitate the mass transport. In comparison to homogeneous vanadium complexes and VO x /TiO2 prepared by impregnation, the meso-VTN catalysts showed superior activity, selectivity, and stability in the aerobic oxidation of ethyl lactate to ethyl pyruvate. We also studied the effect of various vanadium precursors, which revealed that the vanadium-induced phase transition of meso-VTN from anatase to rutile depends strongly on the vanadium precursor. NH4VO3 was found to be the optimal vanadium precursor, forming more monomeric vanadium species. V4+ as the major valence state was incorporated into the lattice of the NH4VO3-derived VTN material, yielding more V4+-O-Ti bonds in the anatase-dominant structure. In situ DRIFT spectroscopy and density functional theory calculations show that V4+-O-Ti bonds are responsible for the dissociation of ethyl lactate over VTN catalysts and for further activation of the deprotonation of ß-hydrogen. Molecular oxygen can replenish the surface oxygen to regenerate the V4+-O-Ti bonds.

20.
ChemCatChem ; 10(1): 211-221, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29399208

ABSTRACT

Catalytic biomass conversion is often hindered by coking. Carbon compounds cover active surface and plug pores, causing catalyst deactivation. Material design at the nanoscale allows tailoring of the catalytic activity and stability. Here, we report a simple synthesis of nanosized ZSM-5 materials by using a silicalite-1 seeding suspension. ZSM-5 crystals were grown from a deionized silica source in the presence of ammonia. By using silicalite-1 seeds, crystalline ZSM-5 is synthesized without any structure-directing agent. This method allows parallel preparation of a range of ZSM-5 samples, eliminating time-consuming ion-exchange steps. Mesoporosity is introduced by formation of intercrystallite voids, owing to nanocrystal agglomeration. The effects of crystal sizes and morphologies are then evaluated in the catalytic dehydration of glycerol to acrolein, with results compared against commercial ZSM-5. The most active nanosized ZSM-5 catalysts were five times more stable compared with commercial ZSM-5, giving quantitative conversion and twice the acrolein yield compared with the commercial catalyst. The influence of the catalyst structure on the chemical diffusion and the resistance to coking are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...