Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Hemasphere ; 7(5): e881, 2023 May.
Article in English | MEDLINE | ID: mdl-37153876

ABSTRACT

The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcγRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16+ and granzyme B+ NK cells, and higher frequency of TIM-3+ and HLA-DR+ NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells.

2.
J Innate Immun ; : 1-16, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35998572

ABSTRACT

Contrasting the antigen-presenting dendritic cells (DCs) in the conducting airways, the alveolar DC populations in human lungs have remained poorly investigated. Consequently, little is known about how alveolar DCs are altered in diseases such as chronic obstructive pulmonary disease (COPD). This study maps multiple tissue DC categories in the distal lung across COPD severities. Specifically, single-multiplex immunohistochemistry was applied to quantify langerin/CD207+, CD1a+, BDCA2+, and CD11c+ subsets in distal lung compartments from patients with COPD (GOLD stage I-IV) and never-smoking and smoking controls. In the alveolar parenchyma, increased numbers of CD1a+langerin- (p < 0.05) and BDCA-2+ DCs (p < 0.001) were observed in advanced COPD compared with controls. Alveolar CD11c+ DCs also increased in advanced COPD (p < 0.01). In small airways, langerin+ and BDCA-2+ DCs were also significantly increased. Contrasting the small airway DCs, most alveolar DC subsets frequently extended luminal protrusions. Importantly, alveolar and small airway langerin+ DCs in COPD lungs displayed site-specific marker profiles. Further, multiplex immunohistochemistry with single-cell quantification was used to specifically profile langerin DCs and reveal site-specific expression patterns of the maturation and activation markers S100, fascin, MHC2, and B7. Taken together, our results show that clinically advanced COPD is associated with increased levels of multiple alveolar DC populations exhibiting features of both adaptive and innate immunity phenotypes. This expansion is likely to contribute to the distal lung immunopathology in COPD patients.

3.
Blood Adv ; 3(22): 3650-3660, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31751473

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is often associated with chemotherapy- and radiotherapy-induced host tissue damage, leading to graft-versus-host disease (GVHD). Innate lymphoid cells (ILC) have an essential role in tissue homeostasis and tissue repair via their production of interleukin (IL)-22, which acts on intestinal stem cells. The tissue healing capacities of ILC via IL-22 in the context of allo-HSCT and GVHD has previously been demonstrated in a mouse model for acute GVHD. We investigated potential other ways of ILC-mediated tissue protection against GVHD. Tissue injury leads to the release of danger-associated molecular patterns (DAMPs). DAMPs interact with purinergic receptors and ectoenzymes on immune cells and induce pleiotropic effects, including activation of proinflammatory antigen-presenting cells and immunosuppressive effects via the generation of adenosine. Here, we report a novel subset of human ILC3 that coexpress the ectoenzymes CD39 and CD73 (ecto+ ILC3). Ecto+ ILC3 express RORγt and were present in the oral-gastrointestinal tract and bone marrow. ILC3 ectoenzyme expression is modulated by the proinflammatory cytokine IL-1ß. Extracellular adenosine triphosphate (eATP) stimulated ecto+ ILC3 to produce IL-22 and adenosine. Activated ecto+ ILC3 suppressed autologous T-cell proliferation in coculture experiments via the production of adenosine. In allo-HSCT recipients, intestinal GVHD was associated with reduced proportions of ecto+ ILC3 and decreased levels of adenosine and its metabolite inosine. Taken together, ecto+ ILC3 have immunosuppressive properties, but in patients with GVHD, ecto+ ILC3 are depleted. A lack of ecto+ ILC3 and subsequent reduced capacity to neutralize DAMPs may contribute to the development of GVHD.


Subject(s)
Gene Expression Regulation, Enzymologic , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Immune Tolerance , Immunity, Innate , Lymphocytes/immunology , Lymphocytes/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Adult , Aged , Biomarkers , Cell Proliferation , Cytokines/metabolism , Ectopic Gene Expression , Female , Hematopoietic Stem Cell Transplantation , Humans , Hydrolysis , Immunophenotyping , Male , Middle Aged , Transplantation, Homologous
4.
Nat Commun ; 10(1): 2162, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089134

ABSTRACT

Innate lymphoid cells (ILCs) are crucial for the immune surveillance at mucosal sites. ILCs coordinate early eradication of pathogens and contribute to tissue healing and remodeling, features that are dysfunctional in patients with cystic fibrosis (CF). The mechanisms by which ILCs contribute to CF-immunopathology are ill-defined. Here, we show that group 2 ILCs (ILC2s) transdifferentiated into IL-17-secreting cells in the presence of the epithelial-derived cytokines IL-1ß, IL-23 and TGF-ß. This conversion is abrogated by IL-4 or vitamin D3. IL-17 producing ILC2s induce IL-8 secretion by epithelial cells and their presence in nasal polyps of CF patients is associated with neutrophilia. Our data suggest that ILC2s undergo transdifferentiation in CF nasal polyps in response to local cytokines, which are induced by infectious agents.


Subject(s)
Cell Plasticity/immunology , Cystic Fibrosis/immunology , Inflammation/immunology , Nasal Polyps/immunology , Th17 Cells/immunology , Adult , Animals , Cell Line , Cystic Fibrosis/blood , Cystic Fibrosis/pathology , Female , Humans , Immunity, Innate , Inflammation/blood , Inflammation/pathology , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Male , Mice , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Nasal Polyps/blood , Nasal Polyps/pathology , Neutrophils/immunology , Young Adult
5.
ERJ Open Res ; 4(4)2018 Oct.
Article in English | MEDLINE | ID: mdl-30480000

ABSTRACT

Viral infections predispose to the development of childhood asthma, a disease associated with increased lung mast cells (MCs). This study investigated whether viral lower respiratory tract infections (LRTIs) can already evoke a MC response during childhood. Lung tissue from young children who died following LRTIs were processed for immunohistochemical identification of MCs. Children who died from nonrespiratory causes served as controls. MCs were examined in relation to sensitisation in infant mice exposed to allergen during influenza A infection. Increased numbers of MCs were observed in the alveolar parenchyma of children infected with LRTIs (median (range) 12.5 (0-78) MCs per mm2) compared to controls (0.63 (0-4) MCs per mm2, p=0.0005). The alveolar MC expansion was associated with a higher proportion of CD34+ tryptase+ progenitors (controls: 0% (0-1%); LRTIs: 0.9% (0-3%) CD34+ MCs (p=0.01)) and an increased expression of the vascular cell adhesion molecule (VCAM)-1 (controls: 0.2 (0.07-0.3); LRTIs: 0.3 (0.02-2) VCAM-1 per mm2 (p=0.04)). Similarly, infant mice infected with H1N1 alone or together with house dust mite (HDM) developed an increase in alveolar MCs (saline: 0.4 (0.3-0.5); HDM: 0.6 (0.4-0.9); H1N1: 1.4 (0.4-2.0); HDM+H1N1: 2.2 (1.2-4.4) MCs per mm2 (p<0.0001)). Alveolar MCs continued to increase and remained significantly higher into adulthood when exposed to H1N1+HDM (day 36: 2.2 (1.2-4.4); day 57: 4.6 (1.6-15) MCs per mm2 (p=0.01)) but not when infected with H1N1 alone. Our data demonstrate that distal viral infections in young children evoke a rapid accumulation of alveolar MCs. Apart from revealing a novel immune response to distal infections, our data may have important implications for the link between viral infections during early childhood and subsequent asthma development.

6.
Cell Rep ; 18(7): 1761-1773, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28199847

ABSTRACT

Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1+ group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1+ ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1+ ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1- cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1+ ILC3s. NRP1+ ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates.


Subject(s)
Lymphocytes/metabolism , Lymphoid Tissue/metabolism , Neuropilin-1/metabolism , Animals , Cell Movement/physiology , Cells, Cultured , Cytokines/metabolism , Humans , Leukocyte Common Antigens/metabolism , Mice , Neovascularization, Pathologic/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
Nat Rev Rheumatol ; 13(3): 164-173, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28148916

ABSTRACT

Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8+ T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and group 3 ILCs, based on the transcription factors they depend on for their development and function, and the cytokines they produce. Emerging data indicate that ILCs not only have protective functions but can also have detrimental effects when dysregulated, leading to chronic inflammation and autoimmune diseases, including asthma, inflammatory bowel disease, graft-versus-host disease, psoriasis, rheumatoid arthritis and atopic dermatitis. Elucidation of the cytokine pathways involved in various autoimmune diseases - and the identification of ILCs as potent producers of these cytokines - points towards a potential role for these cellular players in the pathophysiology of these diseases. In this Review we discuss the current knowledge of the role of ILCs in the pathogenesis of rheumatic and other autoimmune diseases.


Subject(s)
Autoimmunity/physiology , Lymphocytes/physiology , Rheumatic Diseases/physiopathology , Autoimmune Diseases/physiopathology , Humans , Immunity, Innate/physiology , Inflammatory Bowel Diseases/physiopathology , Rheumatic Diseases/immunology , Spondylarthropathies/physiopathology
8.
Nat Immunol ; 17(6): 636-45, 2016 06.
Article in English | MEDLINE | ID: mdl-27111145

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1ß (IL-1ß) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.


Subject(s)
Cell Plasticity , Eosinophils/immunology , Immunity, Innate , Interleukin-12/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Lymphocytes/immunology , Nasal Polyps/immunology , Pneumonia/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Rhinitis/immunology , Sinusitis/immunology , Animals , Cell Differentiation , Cells, Cultured , Female , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, SCID , Th1 Cells/immunology , Th1-Th2 Balance , Th2 Cells/immunology
9.
J Cyst Fibros ; 14(4): 453-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25492873

ABSTRACT

BACKGROUND: The glycoprotein osteopontin plays important roles in several states of disease associated with inflammation, for example by recruiting neutrophils but its expression and possible roles in cystic fibrosis (CF) have not been investigated. METHODS: Immunohistochemistry and ELISA were used to detect osteopontin in clinical samples. In addition, osteopontin-binding and functional interference with antibacterial (ELR-negative) and neutrophil-recruiting (ELR-positive) CXC-chemokines were investigated using in vitro assays. RESULTS: Increased osteopontin-expression was found in the airways of CF patients compared with controls. Interestingly, osteopontin bound to ELR-negative CXC-chemokines, reducing their antibacterial and receptor-activating properties while no binding or interference with the function of ELR-positive chemokines was found. CONCLUSIONS: High expression of osteopontin is likely part of the dysregulated inflammation seen in CF, impairing the activities of ELR-negative chemokines that both serve as innate antibiotics and recruit NK and cytotoxic T cells, instead promoting an excessive influx of neutrophils, and may thus contribute to disease progress.


Subject(s)
Chemokines, CXC/physiology , Cystic Fibrosis/metabolism , Lung/metabolism , Osteopontin/metabolism , Case-Control Studies , Cystic Fibrosis/etiology , Cystic Fibrosis/pathology , Humans , Neutrophil Infiltration/physiology , Sputum/metabolism
10.
J Innate Immun ; 6(6): 846-59, 2014.
Article in English | MEDLINE | ID: mdl-25115612

ABSTRACT

In cystic fibrosis (CF), colonization of the airways with Pseudomonas aeruginosa is associated with disease deterioration. The mechanism behind the disease progression is not fully understood. The present work shows that the antibacterial chemokine MIG/CXCL9 is present in the airways and in sputum of CF patients. MIG/CXCL9 showed high bactericidal activity against. P. aeruginosa, including some strains from the airways of CF patients. Full-length MIG/CXCL9 was detected in sputum from healthy controls and CF patients colonized with P. aeruginosa. However, degraded MIG/CXCL9 was only found in CF sputum. In vitro, elastase of P. aeruginosa cleaved off a fragment of similar size and two additional fragments from MIG/CXCL9. The fragments showed less bactericidal activity against P. aeruginosa compared with the full-length protein. The fragments did not activate the MIG/CXCL9 receptor CXCR3 (expressed e.g. by NK cells, mast cells, and activated T cells) but instead displayed noncompetitive inhibition. In vitro, a decrease in CXCR3-bearing cells was found within and in the proximity of the bronchial epithelium of CF lung tissue compared with controls. Taken together, both bactericidal and cell-recruiting activities of MIG/CXCL9 are corrupted by P. aeruginosa through release of elastase, and this may contribute to impaired airway host defense in CF.


Subject(s)
Bacterial Proteins/immunology , Chemokine CXCL9/immunology , Cystic Fibrosis/immunology , Metalloendopeptidases/immunology , Proteolysis , Pseudomonas aeruginosa/immunology , Receptors, CXCR3/immunology , Bacterial Proteins/metabolism , Chemokine CXCL9/metabolism , Cystic Fibrosis/enzymology , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Female , Humans , Male , Metalloendopeptidases/metabolism , Pseudomonas aeruginosa/enzymology , Receptors, CXCR3/metabolism , Sputum/immunology , Sputum/microbiology
12.
Thorax ; 68(6): 521-31, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23412435

ABSTRACT

RATIONALE: The alveolar pathology in chronic obstructive pulmonary disease (COPD) involves antigen-driven immune events. However, the induction sites of alveolar adaptive immune responses have remained poorly investigated. OBJECTIVES: To explore the hypothesis that interfaces between the alveolar lumen and lymphoid aggregates (LAs) provide a structural basis for increased alveolar antigen uptake in COPD lungs. METHODS: Lung samples from patients with mild (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I), moderate-severe (GOLD II-III), and very severe (GOLD IV) COPD were subjected to detailed histological assessments of adaptive immune system components. Never smokers and smokers without COPD served as controls. RESULTS: Quantitative histology, involving computerised three-dimensional reconstructions, confirmed a rich occurrence of alveolar-restricted LAs and revealed, for the first time, that the vast majority of vascular or bronchiolar associated LAs had alveolar interfaces but also an intricate network of lymphatic vessels. Uniquely to COPD lungs, the interface epithelium had transformed into a columnar phenotype. Accumulation of langerin (CD207)(+) dendritic cells occurred in the interface epithelium in patients with COPD but not controls. The antigen-capturing capacity of langerin(+) dendritic cells was confirmed by increased alveolar protrusions and physical T cell contact. Several of these immune remodelling parameters correlated with lung function parameters. CONCLUSIONS: Severe stages of COPD are associated with an emergence of remodelled and dendritic cell-rich alveolar-lymphoid interfaces. This novel type of immune remodelling, which predicts an increased capacity to respond to alveolar antigens, is suggested to contribute to aggravated inflammation in COPD.


Subject(s)
Antigens/immunology , Dendritic Cells/immunology , Pulmonary Alveoli/immunology , Pulmonary Disease, Chronic Obstructive/immunology , T-Lymphocytes/immunology , Adult , Aged , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Antigens/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Forced Expiratory Volume/physiology , Humans , Imaging, Three-Dimensional , Lung/immunology , Lung/metabolism , Lung/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Severity of Illness Index , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
13.
J Virol ; 86(8): 4091-101, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22345456

ABSTRACT

We have investigated the previously uncharacterized human cytomegalovirus (HCMV) UL1 open reading frame (ORF), a member of the rapidly evolving HCMV RL11 family. UL1 is HCMV specific; the absence of UL1 in chimpanzee cytomegalovirus (CCMV) and sequence analysis studies suggest that UL1 may have originated by the duplication of an ancestor gene from the RL11-TRL cluster (TRL11, TRL12, and TRL13). Sequence similarity searches against human immunoglobulin (Ig)-containing proteins revealed that HCMV pUL1 shows significant similarity to the cellular carcinoembryonic antigen-related (CEA) protein family N-terminal Ig domain, which is responsible for CEA ligand recognition. Northern blot analysis revealed that UL1 is transcribed during the late phase of the viral replication cycle in both fibroblast-adapted and endotheliotropic strains of HCMV. We characterized the protein encoded by hemagglutinin (HA)-tagged UL1 in the AD169-derived HB5 background. UL1 is expressed as a 224-amino-acid type I transmembrane glycoprotein which becomes detectable at 48 h postinfection. In infected human fibroblasts, pUL1 colocalized at the cytoplasmic site of virion assembly and secondary envelopment together with TGN-46, a marker for the trans-Golgi network, and viral structural proteins, including the envelope glycoprotein gB and the tegument phosphoprotein pp28. Furthermore, analyses of highly purified AD169 UL1-HA epitope-tagged virions revealed that pUL1 is a novel constituent of the HCMV envelope. Importantly, the deletion of UL1 in HCMV TB40/E resulted in reduced growth in a cell type-specific manner, suggesting that pUL1 may be implicated in regulating HCMV cell tropism.


Subject(s)
Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virion/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Capsid Proteins/metabolism , Cell Line , Evolution, Molecular , Gene Deletion , Gene Expression Regulation, Viral , Gene Order , Genes, Viral , Glycoproteins/chemistry , Humans , Kinetics , Molecular Sequence Data , Protein Binding , Protein Transport , Sequence Alignment , Transcription, Genetic , Viral Envelope Proteins/chemistry , Virion/chemistry , Virus Assembly , Virus Replication
14.
Nat Genet ; 40(5): 560-6, 2008 May.
Article in English | MEDLINE | ID: mdl-18443594

ABSTRACT

The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.


Subject(s)
Databases, Genetic , Haplotypes , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Rats, Inbred Strains/genetics , Rats/genetics , Animals , Chromosome Mapping , Genome , Linkage Disequilibrium , Phylogeny , Recombination, Genetic
15.
Protein Eng Des Sel ; 20(6): 301-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17588963

ABSTRACT

Proteochemometrics is a technology for the study of molecular recognition based on chemometric techniques. Here we applied it to analyse the amino acids and amino acid physico-chemical properties that are involved in antibodies' recognition of peptide antigens. To this end, we used a study system comprised by a diverse single chain antibody library derived from the murine mAb anti-p24 (HIV-1) antibody CB4-1, evaluated on peptide arrays manufactured by SPOT synthesis. The binding pattern obtained was correlated to physico-chemical descriptors (z-scales) of antibodies and peptides amino acids using partial least-squares projections to latent structures. Cross terms derived from antibody and antigen descriptors were included, which substantially improved the proteochemometric model. The final model was statistically highly satisfactory with a correlation coefficient R(2) = 0.73 and predictive ability Q(2) = 0.68. The physico-chemical properties of each interacting amino acid residue of both the peptides and the antibodies being essential for the antigen-antibody recognition could be retrieved from the model. The study shows for the first time the feasibility of using proteochemometrics to analyse the molecular recognition of antigens by antibodies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Reactions , HIV Core Protein p24/immunology , Immunoglobulin Variable Region/chemistry , Peptides/chemistry , Amino Acids/chemistry , Animals , Antibodies, Monoclonal/genetics , Combinatorial Chemistry Techniques , Feasibility Studies , Immunoglobulin Variable Region/genetics , Mice , Models, Chemical , Mutation , Peptides/chemical synthesis , Protein Array Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...