Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(71): e202302540, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37752885

ABSTRACT

The chemistry of alkali-metal enolates is dominated by ion pairing. To improve our understanding of the intrinsic interactions between the alkali-metal cations and the enolate anions, we have applied Cooks' kinetic method to determine relative M+ (M=Li, Na, K) affinities of the stabilized enolates derived from acetylacetone, ethyl acetoacetate, diethyl malonate, ethyl cyanoacetate, 2-cyanoacetamide, and methyl malonate monoamide in the gas phase. Quantum chemical calculations support the experimental results and moreover afford insight into the structures of the alkali-metal enolate complexes. The affinities decrease with increasing size of the alkali-metal cations, reflecting weaker electrostatic interactions and lower charge densities of the free M+ ions. For the different enolates, a comparison of their coordinating abilities is complicated by the fact that some of the free anions undergo conformational changes resulting in stabilizing intramolecular interactions. If these complicating effects are disregarded, the M+ affinities correlate with the electron density of the chelating functionalities, that is, the carbonyl and/or the nitrile groups of the enolates. A comparison with the known association constants of the corresponding alkali-metal enolates in solution points to the importance of solvation effects for these systems.

2.
ACS Appl Mater Interfaces ; 15(9): 11586-11598, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36848241

ABSTRACT

The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane. Here, we established phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2)-doped supported planar lipid bilayers to which contractile actomyosin networks were bound via the membrane-actin linker ezrin. This membrane system, amenable to high-resolution fluorescence microscopy, enabled us to analyze the connectivity and contractility of the actomyosin network. We found that the network architecture and dynamics are not only a function of the PtdIns[4,5]P2 concentration but also depend on the presence of negatively charged phosphatidylserine (PS). PS drives the attached network into a regime, where low but physiologically relevant connectivity to the membrane results in strong contractility of the actomyosin network, emphasizing the importance of the lipid composition of the membrane interface.


Subject(s)
Actins , Actomyosin , Animals , Actins/metabolism , Lipid Bilayers/chemistry , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Phosphatidylinositols , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...