Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(16)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34983035

ABSTRACT

We report that high absorption PbSe colloidal quantum dots (QDs) having a peak absorbance beyond 2100 nm were synthesized and incorporated into InSnZnO (ITZO) channel layer-based thin film transistors (TFTs). It was intended that PbSe QDs with proportionally less photocurrent modulation can be remedied by semiconducting and low off-current ITZO-based TFT configuration. Multiple deposition scheme of PbSe QDs on ITZO metal oxide thin film gave rise to nearly linear increase of film thickness with acceptably uniform and smooth surface (less than 10 nm). Hybrid PbSe/ITZO thin film-based phototransistor exhibited the best performance of near infrared (NIR) detection in terms of response time, sensitivity and detectivity as high as 0.38 s, 3.91 and 4.55 × 107Jones at room temperature, respectively. This is indebted mainly from the effective diffusion of photogenerated carrier from the PbSe surface to ITZO channel layer as well as from the conduction band alignment between them. Therefore, we believe that our hybrid PbSe/ITZO material platform can be widely used to be in favour of incorporation of solution-processed colloidal light absorbing material into the high-performance metal oxide thin film transistor configuration.

2.
ACS Appl Mater Interfaces ; 7(30): 16223-30, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26151195

ABSTRACT

Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PEDOT: PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs. Our best-performing PEDOT: PSS/CuNW films have optical transmittance T550 = 84.2% (at λ = 550 nm) and sheet resistance Rs = 25 Ω/sq, while our best CuNW/rGO films have T550 = 84% and Rs = 21.7 Ω/sq.

SELECTION OF CITATIONS
SEARCH DETAIL
...