Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
ILAR J ; 59(1): 18-28, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30566589

ABSTRACT

Development of new biomedical products necessitates nonclinical safety assessment in animals as a means of assessing potential risk to human patients. Pivotal nonclinical safety studies that support human clinical trials are performed according to Good Laboratory Practice (GLP) guidelines, which are designed to ensure that the study was conducted under carefully controlled conditions using standardized and validated procedures that will yield a reliable, reproducible, and traceable data set. The GLP guidelines established by different regulatory agencies address organizational structure, personnel responsibilities, personnel training practices, quality assurance (ensuring compliance), facilities, equipment, standard operating procedures, study documentation (record keeping), and record and sample retention. Academic institutions engaging in nonclinical safety assessment on-site have multiple options for implementing a GLP quality system. This article outlines the rationale supporting the use of a GLP-compliant or GLP-like quality system in academia and reviews key concepts needed to efficiently and effectively implement GLP in the academic setting. Emphasis is given to provision of GLP-compliant pathology support as (1) pathology data are an essential component of GLP nonclinical safety testing, (2) familiarity with pathology-related GLP procedures typically is gained first outside the academic setting, and (3) microscopic pathology diagnoses and interpretations require special accommodations to ensure that they are undertaken in a GLP-compliant fashion.


Subject(s)
Pathology , Research Design
2.
Hum Gene Ther Clin Dev ; 26(4): 228-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26684447

ABSTRACT

No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease due to defect in α-N-acetylglucosaminidase (NAGLU). In preparation for a clinical trial, we performed an IND-enabling GLP-toxicology study to assess systemic rAAV9-CMV-hNAGLU gene delivery in WT C57BL/6 mice at 1 × 10(14) vg/kg and 2 × 10(14) vg/kg (n = 30/group, M:F = 1:1), and non-GLP testing in MPS IIIB mice at 2 × 10(14) vg/kg. Importantly, no adverse clinical signs or chronic toxicity were observed through the 6 month study duration. The rAAV9-mediated rNAGLU expression was rapid and persistent in virtually all tested CNS and somatic tissues. However, acute liver toxicity occurred in 33% (5/15) WT males in the 2 × 10(14) vg/kg cohort, which was dose-dependent, sex-associated, and genotype-specific, likely due to hepatic rNAGLU overexpression. Interestingly, a significant dose response was observed only in the brain and spinal cord, whereas in the liver at 24 weeks postinfection (pi), NAGLU activity was reduced to endogenous levels in the high dose cohort but remained at supranormal levels in the low dose group. The possibility of rAAV9 germline transmission appears to be minimal. The vector delivery resulted in transient T-cell responses and characteristic acute antibody responses to both AAV9 and rNAGLU in all rAAV9-treated animals, with no detectable impacts on tissue transgene expression. This study demonstrates a generally safe and effective profile, and may have identified the upper dosing limit of rAAV9-CMV-hNAGLU via systemic delivery for the treatment of MPS IIIB.


Subject(s)
Brain/metabolism , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Liver/metabolism , Mucopolysaccharidosis III/therapy , Practice Guidelines as Topic , Spinal Cord/metabolism , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Animals , Dependovirus/genetics , Dependovirus/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Male , Mice , Mice, Inbred C57BL , Organ Specificity
3.
Ann Neurol ; 67(6): 771-80, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20517938

ABSTRACT

OBJECTIVE: The objective of this study was to establish the feasibility of long-term gentamicin dosing to achieve stop codon readthrough and produce full-length dystrophin. Mutation suppression of stop codons, successfully achieved in the mdx mouse using gentamicin, represents an important evolving treatment strategy in Duchenne muscular dystrophy (DMD). METHODS: Two DMD cohorts received 14-day gentamicin (7.5mg/kg/day): Cohort 1 (n = 10) stop codon patients and Cohort 2 (n = 8) frameshift controls. Two additional stop codon DMD cohorts were gentamicin treated (7.5mg/kg) for 6 months: Cohort 3 (n = 12) dosed weekly and Cohort 4 (n = 4) dosed twice weekly. Pre- and post-treatment biopsies were assessed for dystrophin levels, as were clinical outcomes. RESULTS: In the 14-day study, serum creatine kinase (CK) dropped by 50%, which was not seen in frameshift DMD controls. After 6 months of gentamicin, dystrophin levels significantly increased (p = 0.027); the highest levels reached 13 to 15% of normal (1 in Cohort 3, and 2 in Cohort 4), accompanied by reduced serum CK favoring drug-induced readthrough of stop codons. This was supported by stabilization of strength and a slight increase in forced vital capacity. Pretreatment stable transcripts predicted an increase of dystrophin after gentamicin. Readthrough efficiency was not affected by the stop codon or its surrounding fourth nucleotide. In 1 subject, antigen-specific interferon-gamma enzyme-linked immunospot assay detected an immunogenic dystrophin epitope. INTERPRETATION: The results support efforts to achieve drug-induced mutation suppression of stop codons. The immunogenic epitope resulting from readthrough emphasizes the importance of monitoring T-cell immunity during clinical studies that suppress stop codons. Similar principles apply to other molecular strategies, including exon skipping and gene therapy.


Subject(s)
Codon, Terminator/genetics , Gentamicins/therapeutic use , Muscular Dystrophy, Duchenne/genetics , Protein Synthesis Inhibitors/therapeutic use , Adolescent , Audiometry/methods , Child , Child, Preschool , Codon, Terminator/drug effects , Cohort Studies , Creatine Kinase/blood , Enzyme-Linked Immunosorbent Assay/methods , Humans , Muscle Cells/pathology , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/pathology , Mutation/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/pathology , Time Factors
4.
Ann Neurol ; 66(3): 290-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19798725

ABSTRACT

OBJECTIVE: alpha-Sarcoglycan deficiency results in a severe form of muscular dystrophy (limb-girdle muscular dystrophy type 2D [LGMD2D]) without treatment. Gene replacement represents a strategy for correcting the underlying defect. Questions related to this approach were addressed in this clinical trial, particularly the need for immunotherapy and persistence of gene expression. METHODS: A double-blind, randomized controlled trial using rAAV1.tMCK.hSGCA injected into the extensor digitorum brevis muscle was conducted. Control sides received saline. A 3-day course of methylprednisolone accompanied gene transfer without further immune suppression. RESULTS: No adverse events were encountered. SGCA gene expression increased 4-5-fold over control sides when examined at 6 weeks (2 subjects) and 3 months (1 subject). The full sarcoglycan complex was restored in all subjects, and muscle fiber size was increased in the 3-month subject. Adeno-associated virus serotype 1 (AAV1)-neutralizing antibodies were seen as early as 2 weeks. Neither CD4+ nor CD8+ cells were increased over contralateral sides. Scattered foci of inflammation could be found, but showed features of programmed cell death. Enzyme-linked immunospot (ELISpot) showed no interferon-gamma response to alpha-SG or AAV1 capsid peptide pools, with the exception of a minimal capsid response in 1 subject. Restimulation to detect low-frequency capsid-specific T cells by ELISpot assays was negative. Results of the first 3 subjects successfully achieved study aims, precluding the need for additional enrollment. INTERPRETATION: The finding of this gene replacement study in LGMD2D has important implications for muscular dystrophy. Sustained gene expression was seen, but studies over longer time periods without immunotherapy will be required for design of vascular delivery gene therapy trials.


Subject(s)
Genetic Therapy/methods , Muscular Dystrophies, Limb-Girdle/therapy , Sarcoglycans/deficiency , Sarcoglycans/genetics , Adolescent , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , Child , Dependovirus/immunology , Female , Gene Expression/genetics , Gene Transfer Techniques , Humans , Immunotherapy/methods , Male , Membrane Proteins , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Neutralization Tests , Sarcoglycans/metabolism
5.
Sci Transl Med ; 1(6): 6ra15, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-20368179

ABSTRACT

Antagonists of myostatin, a blood-borne negative regulator of muscle growth produced in muscle cells, have shown considerable promise for enhancing muscle mass and strength in rodent studies and could serve as potential therapeutic agents for human muscle diseases. One of the most potent of these agents, follistatin, is both safe and effective in mice, but similar tests have not been performed in nonhuman primates. To assess this important criterion for clinical translation, we tested an alternatively spliced form of human follistatin that affects skeletal muscle but that has only minimal effects on nonmuscle cells. When injected into the quadriceps of cynomolgus macaque monkeys, a follistatin isoform expressed from an adeno-associated virus serotype 1 vector, AAV1-FS344, induced pronounced and durable increases in muscle size and strength. Long-term expression of the transgene did not produce any abnormal changes in the morphology or function of key organs, indicating the safety of gene delivery by intramuscular injection of an AAV1 vector. Our results, together with the findings in mice, suggest that therapy with AAV1-FS344 may improve muscle mass and function in patients with certain degenerative muscle disorders.


Subject(s)
Follistatin/genetics , Gene Transfer Techniques , Macaca fascicularis/physiology , Muscle Strength/genetics , Muscle, Skeletal/growth & development , Alternative Splicing , Animals , Dependovirus/genetics , Genetic Vectors , Macaca fascicularis/growth & development
6.
J Child Neurol ; 23(7): 748-51, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18354148

ABSTRACT

This study tested the hypothesis that gamma-glutamyl transferase (GGT) can be used as a reliable biomarker to distinguish skeletal muscle from liver damage. Twenty-eight Duchenne muscular dystrophy subjects with proven dystrophin gene mutations were enrolled. Included were 14 ambulatory and 14 nonambulatory patients with approximately half of each cohort taking corticosteroids. Twenty normal males served as controls. Initial blood samples for serum GGT and creatine kinase were taken between 8AM and 9AM and redrawn 8 hours later to test for variability. Between blood draws, subjects resumed normal activities in a play environment or could leave the clinic. Not a single duchenne muscular dystrophy patient showed a GGT outside the control range at any time point, while creatine kinase levels were 14 to 200 times normal. Validation of this finding is essential for management of patients with muscle disorders exposed to potentially hepatotoxic drugs for clinical management or monitoring subjects participating in clinical trials.


Subject(s)
Liver Diseases/enzymology , Liver/enzymology , Muscle, Skeletal/enzymology , Muscular Dystrophy, Duchenne/enzymology , gamma-Glutamyltransferase/blood , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Biomarkers/blood , Case-Control Studies , Child , Cohort Studies , Creatine Kinase/blood , Diagnosis, Differential , Humans , Liver Diseases/blood , Liver Diseases/diagnosis , Male , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/drug therapy , Reference Values
7.
J Neuropathol Exp Neurol ; 65(10): 995-1003, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17021404

ABSTRACT

Limb-girdle muscular dystrophy (LGMD) has been linked to 15 chromosomal loci, 7 autosomal-dominant (LGMD1A to E) and 10 autosomal-recessive (LGMD2A to J). To determine the distribution of subtypes among patients in the United States, 6 medical centers evaluated patients with a referral diagnosis of LGMD. Muscle biopsies provided histopathology and immunodiagnostic testing, and their protein abnormalities along with clinical parameters directed mutation screening. The diagnosis in 23 patients was a disorder other than LGMD. Of the remaining 289 unrelated patients, 266 had muscle biopsies sufficient for complete microscopic evaluation; 121 also underwent Western blotting. From this combined evaluation, the distribution of immunophenotypes is 12% calpainopathy, 18% dysferlinopathy, 15% sarcoglycanopathy, 15% dystroglycanopathy, and 1.5% caveolinopathy. Genotypes distributed among 2 dominant and 7 recessive subtypes have been determined for 83 patients. This study of a large racially and ethnically diverse population of patients with LGMD indicates that establishing a putative subtype is possible more than half the time using available diagnostic testing. An efficient approach to genotypic diagnosis is muscle biopsy immunophenotyping followed by directed mutational analysis. The most common LGMDs in the United States are calpainopathies, dysferlinopathies, sarcoglycanopathies, and dystroglycanopathies.


Subject(s)
Genotype , Muscular Dystrophies, Limb-Girdle/classification , Muscular Dystrophies, Limb-Girdle/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Blotting, Western , Calpain/deficiency , Caveolin 1/deficiency , Child , Child, Preschool , DNA Mutational Analysis , Dysferlin , Dystroglycans/deficiency , Female , Humans , Immunophenotyping , Male , Membrane Proteins/deficiency , Middle Aged , Muscle Proteins/deficiency , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , United States
8.
Hum Mutat ; 21(1): 99, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12497639

ABSTRACT

Hereditary Inclusion Body Myopathy (HIBM) is a unique group of neuromuscular disorders characterized by adult onset and a typical muscle pathology. We have recently identified the gene encoding for a bifunctional enzyme, UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamine kinase (GNE), as the mutated gene in the prototype form of the disease presenting quadriceps sparing, particularly common in Middle Eastern Jews. Interestingly, we have identified the homozygous M712T Middle Eastern Jewish mutation also in two unrelated Middle Eastern Moslem families. We have also evaluated the involvement of GNE in several families from worldwide non-Jewish ethnic origins presenting symptoms similar to the Middle Eastern HIBM prototype. A total of 14 GNE mutations were identified (one nonsense and 13 missense), of which six are novel: an homozygous missense mutation in a consanguineous family from Italy and in a non consanguineous family from USA, and distinct compound heterozygotes in families from Germany, Italy, Ireland, Bahamas, USA and East India. This study brings to 17 the number of reported GNE mutations in quadriceps sparing myopathy, occurring either in the epimerase or the kinase domain of the enzyme. The mechanism leading to this unique phenotype still remains to be elucidated.


Subject(s)
Carbohydrate Epimerases/genetics , Escherichia coli Proteins , Mutation , Myositis, Inclusion Body/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Adult , DNA Mutational Analysis , Humans , Middle Aged , Myositis, Inclusion Body/diagnosis , Myositis, Inclusion Body/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL
...