Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766178

ABSTRACT

Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) which facilitate the maladaptive behaviors interfering with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is a GABAergic midbrain region involved in aversive signaling and is functionally altered by chronic ethanol exposure. Our recent work identified a dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE significantly increased intrinsic excitability as well as excitatory and inhibitory synaptic drive in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE also increased excitatory synaptic drive in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol.

2.
Front Pharmacol ; 9: 1458, 2018.
Article in English | MEDLINE | ID: mdl-30618752

ABSTRACT

The agranular insular cortex (AIC) has recently been investigated by the alcohol field because of its connectivity to and modulatory control over limbic and brainstem regions implicated in alcohol use disorder (AUD), and because it has shown involvement in animal models of alcohol drinking. Despite evidence of AIC involvement in AUD, there has not yet been an examination of whether ethanol modulates glutamatergic and γ-amino-butyric acid (GABA)ergic synaptic transmission and plasticity in the AIC. Characterizing how the synaptic transmission and plasticity states of AIC cortical processing neurons are modulated by acute ethanol will likely reveal the molecular targets by which chronic ethanol alters AIC function as alcohol drinking transitions from controlled to problematic. Therefore, we collected brain slices from ethanol-naïve adult male mice, obtained whole-cell recording configuration in layer 2/3 AIC pyramidal neurons, and bath-applied ethanol at pharmacologically relevant concentrations during electrophysiological assays of glutamatergic and GABAergic synaptic transmission and plasticity. We found that ethanol inhibited electrically evoked N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory post-synaptic currents (EPSCs) in a concentration-related fashion, and had little effect on evoked α-amino-3-hydrox-5-methylisoxazole-4-propionic acid-type receptor (AMPAR)-mediated EPSCs. Ethanol had no effect on spontaneous excitatory post-synaptic currents (sEPSCs) or inhibitory GABAAR-mediated post-synaptic currents (sIPSCs). We found that synaptic conditioning (low-frequency stimulation for 15 min at 1 Hz) induced a form of long-term depression (LTD) of evoked AMPAR-mediated EPSCs. The ability to induce LTD was inhibited by a non-selective NMDAR antagonist (DL-2-amino-5-phosphonovaleric acid), and also by acute, intoxicating concentrations of ethanol. Taken together these data suggest that the glutamate, but not GABA system in the AIC is uniquely sensitive to ethanol, and that in particular NMDAR-mediated processes in the AIC may be disrupted by pharmacologically relevant concentrations of ethanol.

3.
Alcohol ; 48(4): 337-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24680666

ABSTRACT

Instrumental behavior can shift from flexible, goal-directed actions to automatic, stimulus-response actions. The satiety-specific devaluation test assesses behavioral flexibility by evaluating reward seeking after temporary devaluation of the reinforcer via satiety; a decrease in responding compared to control conditions indicates goal-directed behavior. We have observed variability in the outcome of this test that may be dependent on the reinforcer. Another test of habit, contingency degradation, involves changing the action-outcome association over the course of retraining and determines whether reward seeking is sensitive to changing contingencies. We hypothesized that the outcome of the contingency-degradation test would remain consistent across reinforcers, while the satiety-specific devaluation test may vary across reinforcers because it depends on the ability of the reinforcer to induce satiety. Therefore, we trained rats to self-administer 1.5% sucrose, 10% sucrose, 10% ethanol, or 10 mM monosodium glutamate (MSG) on a fixed-ratio (FR5) schedule that has been shown to promote long-term, goal-directed responding. Next, behavioral flexibility was evaluated in three satiety-specific devaluation tests over 6 weeks. Finally, we investigated reward seeking after contingency-degradation training. All groups displayed sensitivity to satiety-specific devaluation in the first test, indicating goal-directed behavior. While the 10% sucrose and ethanol groups remained goal-directed, the 1.5% sucrose and MSG groups exhibited habit-like behavior in later tests. Nevertheless, all groups displayed decreased responding in an extinction session after contingency-degradation training, indicating goal-directed behavior. These results demonstrate that tests of behavioral flexibility can yield dissimilar results in the same rats. Next, rats from the 1.5% sucrose group underwent the entire experiment again, now self-administering 10% sucrose. These rats showed pronounced goal-directed behavior in satiety-specific and contingency-degradation tests under 10% sucrose conditions, further suggesting that the reinforcer solution affected the outcome of the satiety-specific devaluation test. We conclude that reinforcer characteristics should be considered when investigating habit-like behavior in alcohol research.


Subject(s)
Extinction, Psychological/physiology , Reinforcement, Psychology , Animals , Behavior, Animal/drug effects , Male , Rats, Long-Evans , Reward , Satiety Response/drug effects , Self Administration , Sodium Glutamate/administration & dosage , Sucrose/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...