Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 20(1): 99, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951818

ABSTRACT

BACKGROUND: Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS: In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION: The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.

2.
Sci Data ; 11(1): 466, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719829

ABSTRACT

Decoding complex plant omics is essential for advancing our understanding of plant biology, evolution, and breeding as well as for practical applications in agriculture, conservation, and biotechnology. The advent of Next-Generation Sequencing (NGS) has revolutionized global plant genomic research, offering high-throughput, cost-effective, and accurate methods for generating genomic data. However, challenges still exist that suggest an entirely unresolved genome characterized by high heterozygosity, extensive repetitive sequences, and complex ploidy features. In addition, individual investigation of genomic information from various genetic resources is essential for omics research, as there are differences in traits within a single breed beyond a species due to the uniqueness of sequence variation. This article provides high-quality genomic and transcriptomic insights targeted at the agronomical background.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing , Plant Breeding , Genomics , Information Dissemination , Plants/genetics
3.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836117

ABSTRACT

Deficiencies of either phosphorus (P) or zinc (Zn) or both are one of the major abiotic constraints influencing agricultural production. Research on the effects of individual or combined P and Zn deficiency is limited in cereals. This study reports the effects of the individual or combined deficiency of inorganic phosphate (Pi) and Zn on the phenotypic, root hair modification, nutrient uptake, and molecular responses of finger millet (Eleusine coracana), a nutri-rich cereal crop. Finger millet seedlings were grown hydroponically under control (+Pi+Zn), individual Pi deficiency (-Pi), individual Zn deficiency (-Zn), and combined Pi and Zn deficiency (-Pi-Zn) conditions for 30 days to find the phenotypic, root hair modification, nutrient uptake, and molecular responses. Compared to the individual -Zn condition, the individual -Pi condition had more of an effect in terms of biomass reduction. The combined -Pi-Zn condition increased the root hair length and density compared to the other three conditions. The individual -Zn condition increased the Pi uptake, while the individual -Pi condition favored the Zn uptake. EcZIP2 was highly upregulated in shoot tissues under the individual -Zn condition, and EcPHT1;2 was highly expressed in root tissues under the individual -Pi condition. This is the first study to report the effects of the individual or combined deficiency of Pi and Zn in finger millet and may lead to future studies to better manage P and Zn deficiency.

4.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653856

ABSTRACT

Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.

5.
Plants (Basel) ; 12(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37571002

ABSTRACT

Nowadays, not only the roots, but also leaves and flowers of ginseng are increasingly popular ingredients in supplements for healthcare products and traditional medicine. The cultivation of the shade-loving crop, ginseng, is very demanding in terms of the light environment. Along with the intensity and duration, light direction is another important factor in regulating plant morphophysiology. In the current study, three lighting directions-top (T), side (S), or top + side (TS)-with an intensity of 30 ± 5 µmol·m-2·s-1 photosynthetic photon flux density (PPFD) were employed. Generally, compared with the single T lighting, the composite lighting direction, TS, was more effective in shaping the ginseng with improved characteristics, including shortened, thick shoots; enlarged, thick leaves; more leaf trichomes; earlier flower bud formation; and enhanced photosynthesis. The single S light resulted in the worst growth parameters and strongly inhibited the flower bud formation, leading to the latest flower bud observation. Additionally, the S lighting acted as a positive factor in increasing the leaf thickness and number of trichomes on the leaf adaxial surface. However, the participation of the T lighting weakened these traits. Overall, the TS lighting was the optimal direction for improving the growth and development traits in ginseng. This preliminary research may provide new ideas and orientations in ginseng cultivation lodging resistance and improving the supply of ginseng roots, leaves, and flowers to the market.

6.
Front Plant Sci ; 13: 942789, 2022.
Article in English | MEDLINE | ID: mdl-36035665

ABSTRACT

Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.

7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34769234

ABSTRACT

Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people's ability to adapt to risks as the world's population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.


Subject(s)
Oryza , Plant Breeding , Plant Dormancy/physiology , Oryza/genetics , Oryza/growth & development
8.
World J Microbiol Biotechnol ; 32(8): 131, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27339312

ABSTRACT

Agrobacterium rhizogenes mediated transformation has been experimented in leaf explants of the memory herb Bacopa monnieri in order to assess the regeneration potential of hairy roots (HR) followed by the elicitation of transformed plants for increased Bacoside A production. Out of the four strains tested, A4 and MTCC 532 derived HR exhibited regrowth in MS basal medium while MTCC 2364 derived HR showed regeneration in MS medium supplemented with suitable phyto hormones. R1000 derived HR possessed no regeneration potential. Comparable to A4, MTCC 532 derived HR displayed maximum regrowth frequency of about 85.71 ± 1.84 % with an increase in biomass to threefold. Therefore, five HR plant lines (MTCC 532 derived) were generated and maintained in MS basal liquid medium in which HR3 topped the others in producing a huge biomass of about 67.09 ± 0.66 g FW. PCR amplification and southern hybridization analysis of rol A gene (280 bp) has been performed in order to confirm the transformation process. Moreover, HR3 plant line has accumulated highest total phenolic content of about 165.68 ± 0.82 mg GAE/g DW and highest total flavonoid content of about 497.78 ± 0.57 mg QRE/g DW when compared to other lines and untransformed controls. In addition, HR3 plant extract showed 85.58 ± 0.14 % of DPPH (2, 2-diphenyl-1-picryl hydrazyl) inhibition displaying its reliable anti oxidant potential. Further on elicitation with 10 mg/L chitosan for 2 weeks, HR3 has produced 5.83 % of Bacoside A which is fivefold and threefold increased production when compared to untransformed and transformed unelicited controls respectively. This is the first report on eliciting HR plants for increased metabolite accumulation in B. monnieri.


Subject(s)
Agrobacterium/genetics , Bacopa/growth & development , Plant Roots/microbiology , Saponins/metabolism , Triterpenes/metabolism , Bacopa/microbiology , Biomass , Plant Roots/growth & development , Plants, Genetically Modified , Regeneration , Rhizobium/genetics , Transformation, Genetic
9.
Gene ; 576(1 Pt 3): 581-5, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26515517

ABSTRACT

Genetic variation among 45 genotypes of sorghum (Sorghum bicolor L.) representing seven subpopulations was assessed using three single primer amplification reaction (SPAR) methods viz., inter-simple sequence repeat (ISSR), random amplified polymorphic DNA (RAPD) and directed amplification of minisatellite-region DNA (DAMD). Totally 15 ISSR, 8 RAPD and 7 DAMD primers generated 263 amplification products, accounting for 84.6% polymorphism across all the genotypes. The Mantel's test of correlation revealed the best correlation between ISSR and cumulative data with a correlation coefficient (r) of 0.84. Assessment of population diversity indicated that the maximum intra population genetic diversity was recorded among high FeZn lines (HFL) having maximum values of Nei's genetic diversity (h) (0.244), Shannon information index (I) (0.368) and the percentage of polymorphic loci (Pp) (72.65%) while the corresponding lowest values of 0.074, 0.109 and 17.95% respectively were observed among the members of MDT subpopulation. The mean coefficient of gene differentiation (GST) and the gene flow (Nm) between populations were observed to be 0.396 and 0.7680 respectively. The analysis of molecular variance (AMOVA) suggested that maximum genetic variation exists within populations (95%) than among populations (5%). Thus the information obtained from this study could be utilized in sorghum breeding programmes for the development of varieties with improved nutrition and agronomic values in future.


Subject(s)
Genetic Variation , Genotype , Sorghum/genetics , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...