Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 107(7): 1629-36, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25296315

ABSTRACT

DNA CpG methylation has been associated with chromatin compaction and gene silencing. Whether DNA methylation directly contributes to chromatin compaction remains an open question. In this study, we used fluorescence fluctuation spectroscopy (FFS) to evaluate the compaction and aggregation of tetra-nucleosomes containing specific CpG patterns and methylation levels. The compactness of both unmethylated and methylated tetra-nucleosomes is dependent on DNA sequences. Specifically, methylation of the CpG sites located in the central dyad and the major grooves of DNA seem to have opposite effects on modulating the compactness of tetra-nucleosomes. The interactions among tetra-nucleosomes, however, seem to be enhanced because of DNA methylation independent of sequence contexts. Our finding can shed light on understanding the role of DNA methylation in determining nucleosome positioning pattern and chromatin compactness.


Subject(s)
DNA Methylation , Nucleosomes/chemistry , Nucleosomes/genetics , Protein Aggregates/drug effects , Animals , Base Sequence , CpG Islands/genetics , DNA Methylation/drug effects , Gene Expression Regulation , Magnesium/pharmacology , Models, Molecular , Nucleic Acid Conformation , Nucleosomes/drug effects , Protein Conformation , Spectrometry, Fluorescence
2.
Biopolymers ; 101(5): 517-24, 2014 May.
Article in English | MEDLINE | ID: mdl-24122444

ABSTRACT

In eukaryotic cells, DNA has to bend significantly to pack inside the nucleus. Physical properties of DNA such as bending flexibility and curvature are expected to affect DNA packaging and partially determine the nucleosome positioning patterns inside a cell. DNA CpG methylation, the most common epigenetic modification found in DNA, is known to affect the physical properties of DNA. However, its detailed role in nucleosome formation is less well-established. In this study, we evaluated the effect of defined CpG patterns (unmethylated and methylated) on DNA structure and their respective nucleosome-forming ability. Our results suggest that the addition of CpG dinucleotides, either as a (CG)n stretch or (CGX8 )n repeats at 10 bp intervals, lead to reduced hydrodynamic radius and decreased nucleosome-forming ability of DNA. This effect is more predominant for a DNA stretch ((CG)5) located in the middle of a DNA fragment. Methylation of CpG sites, surprisingly, seems to reduce the difference in DNA structure and nucleosome-forming ability among DNA constructs with different CpG patterns. Our results suggest that unmethylated and methylated CpG patterns can play very different roles in regulating the physical properties of DNA. CpG methylation seems to reduce the DNA conformational variations affiliated with defined CpG patterns. Our results can have significant bearings in understanding the nucleosome positioning pattern in living organisms modulated by DNA sequences and epigenetic features.


Subject(s)
DNA Methylation , DNA/chemistry , Oligodeoxyribonucleotides/metabolism , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Nucleosomes/metabolism
3.
Sci Rep ; 3: 2121, 2013.
Article in English | MEDLINE | ID: mdl-23817195

ABSTRACT

A strong correlation between nucleosome positioning and DNA methylation patterns has been reported in literature. However, the mechanistic model accounting for the correlation remains elusive. In this study, we evaluated the effects of specific DNA methylation patterns on modulating nucleosome conformation and stability using FRET and SAXS. CpG dinucleotide repeats at 10 bp intervals were found to play different roles in nucleosome stability dependent on their methylation states and their relative nucleosomal locations. An additional (CpG)5 stretch located in the nucleosomal central dyad does not alter the nucleosome conformation, but significant conformational differences were observed between the unmethylated and methylated nucleosomes. These findings suggest that the correlation between nucleosome positioning and DNA methylation patterns can arise from the variations in nucleosome stability dependent on their sequence and epigenetic content. This knowledge will help to reveal the detailed role of DNA methylation in regulating chromatin packaging and gene transcription.


Subject(s)
DNA Methylation , Nucleosomes/metabolism , CpG Islands , Fluorescence Resonance Energy Transfer , Scattering, Small Angle
SELECTION OF CITATIONS
SEARCH DETAIL
...