Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(2): 1091-1106, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392187

ABSTRACT

Wild teas are valuable genetic resources for studying evolution and breeding. Here, we report the complete chloroplast genome of the ancient Korean tea 'Hadong Cheon-nyeon Cha' (C. sinensis var. sinensis), which is known as the oldest tea tree in Korea. This study determined seven Camellia sinensis var. sinenesis, including Hadong Cheon-nyeon Cha (HCNC) chloroplast genome sequences, using Illumina sequencing technology via de novo assembly. The chloroplast genome sizes ranged from 157,019 to 157,114 bp and were organized into quadripartite regions with the typical chloroplast genomes. Further, differences in SNPs and InDels were detected across the seven chloroplast genomes through variance analysis. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These genomic resources provide evolutionary insight into Korean tea plant cultivars and lay the foundation for a better understanding of the ancient Korean tea plant HCNC.

2.
Food Res Int ; 164: 112133, 2023 02.
Article in English | MEDLINE | ID: mdl-36737888

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by dopaminergic neuronal damage. In this study, three tea extracts from Hadong, Korea, were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity damage model (C57BL/6 mice) for their therapeutic effects against PD: green tea (GT), semi-fermented tea (SFT), and fermented tea (FT). Theaflavin content in the teas increased but catechin content decreased with the degree of fermentation. In addition, SFT showed the highest theanine and γ-aminobutyric acid contents. SFT at a concentration of 25 µg/mL showed the highest activity in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay among all samples. Furthermore, the 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity of 25 µg/mL SFT was higher than that of l-ascorbic acid. Fermented tea suppressed the expression of inflammatory cytokines, such as interleukin-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, cyclooxygenase-2, and macrophage-1, as well as inhibited overexpression of apoptotic signals, including p-53, cleaved caspase-3, and poly (ADP-ribose) polymerase-1. Moreover, GT, SFT, and FT regulated the MPTP-induced oxidative stress-related factors, including superoxide dismutase, glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate oxidase 4. Fermented tea also alleviated MPTP-induced behavioral impairment and dopaminergic neuronal damage and reduced α-synuclein levels. These results indicate that fermented tea is effective for the treatment of neuro-inflammatory, neuro-apoptotic, and neuro-oxidative disorders.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Mice, Inbred C57BL , Inflammation/drug therapy , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...