Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930357

ABSTRACT

Solution-processed graphene is beneficial for large-scale, low-cost production. However, its small lateral size, variable layer thickness, and uncontrollable oxidation level still restrict its widespread electronic application. In this study, a newly developed electrochemical exfoliation process was introduced, and a graphene-patched film electrode was fabricated by interfacial self-assembly. We were able to minimize the deterioration of graphene colloids during exfoliation by voltage and electrolyte modulation, but the patched structure of the graphene electrode still showed low conductivity with numerous inter-sheet junctions. Therefore, we determined the optimal conditions for the growth of fully networked silver structures on the multi-stacked graphene film by direct current electro-deposition, and these silver-graphene composite films showed significantly lowered graphene-colloid-patched film surface resistance.

2.
ACS Appl Mater Interfaces ; 16(13): 16767-16777, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512769

ABSTRACT

Titanium dioxide (TiO2) nanoparticles are extensively used as a sunscreen filter due to their long-active ultraviolet (UV)-blocking performance. However, their practical use is being challenged by high photochemical activities and limited absorption spectrum. Current solutions include the coating of TiO2 with synthetic polymers and formulating a sunscreen product with additional organic UV filters. Unfortunately, these approaches are no longer considered effective because of recent environmental and public health issues. Herein, TiO2-metal-phenolic network hybrid nanoparticles (TiO2-MPN NPs) are developed as the sole active ingredient for sunscreen products through photochemical suppression and absorption spectrum widening. The MPNs are generated by the complexation of tannic acid with multivalent metal ions, forming a robust coating shell. The TiO2-MPN hybridization extends the absorption region to the high-energy-visible (HEV) light range via a new ligand-to-metal charge transfer photoexcitation pathway, boosting both the sun protection factor and ultraviolet-A protection factor about 4-fold. The TiO2-MPN NPs suppressed the photoinduced reactive oxygen species by 99.9% for 6 h under simulated solar irradiation. Accordingly, they substantially alleviated UV- and HEV-induced cytotoxicity of fibroblasts. This work outlines a new tactic for the eco-friendly and biocompatible design of sunscreen agents by selectively inhibiting the photocatalytic activities of semiconductor nanoparticles while broadening their optical spectrum.

3.
ACS Omega ; 8(21): 18743-18750, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273586

ABSTRACT

Surface modification of inorganic nanoparticles is critical for the quality and performance of pigments, cosmetics, and composite materials. We covered the titanium dioxide nanoparticles' surface with 2-(acetoacetoxy) ethyl methacrylate, a polymerizable chelating agent. Through the in situ polymerization procedure, this molecule's ß-ketoester moiety quickly coordinated with the metal atoms on titanium dioxide nanoparticles, and its methacrylate group formed homogeneous coating layers. This coating layer significantly reduced the photocatalytic activity of titanium dioxide nanoparticles and prevented their aggregation. This nanoparticle dispersion showed low viscosity up to the solid content of 60% (w/w) in the liquid dispersant. As a result, it increased the UV screening performance and dispersion stability. Additionally, this coating layer widened the absorption spectrum of titanium dioxide and could change the color of nanoparticles from pale yellow to brown. It can also be helpful for cosmetic applications.

4.
Polymers (Basel) ; 10(6)2018 Jun 17.
Article in English | MEDLINE | ID: mdl-30966709

ABSTRACT

Recently, there has been increased interest in self-healing membranes containing functional microcapsules in relation to challenges involving water treatment membranes. In this study, a self-healing membrane has been prepared by incorporating microcapsules with a polyurethane (PU) shell and a diisocyanate core in a poly(ether sulfone) (PES) membrane. Depending on the characteristics of the microcapsule, to precisely quantify the self-healing behavior and performance of the produced microcapsule embedded membranes, it is important to understand the effect of a used surfactant on microcapsule synthesis. It is noteworthy that mixed surfactants have been employed to control and tailor the size and morphology of microcapsules during the synthetic process, and the surfactant system employed was one of the most dominant parameters for affecting the healing capability of microcapsule embedded membranes. Various techniques including microscopy (optical and electron), thermal analyses (DSC and TGA), and water flux measurements have been employed. This article provides essential and important information for future research into the subtle relation between microcapsule properties with varied synthetic parameters and the self-healing behavior of membrane.

5.
Adv Mater ; 29(21)2017 Jun.
Article in English | MEDLINE | ID: mdl-28370499

ABSTRACT

Flexible thin-film sensors have been developed for practical uses in invasive or noninvasive cost-effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ-conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin-conformal sensor array (144 pixels) is fabricated having microtopography-guided, graphene-based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin-like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure-assisted intimate-contacts between the device and rough skin. Furthermore, given the thin-film programmable architecture and mechanical deformability of the sensor, a human skin-conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse-waveforms and evolved into a mechanical/thermal-sensitive electric rubber-balloon and an electronic blood-vessel. The microtopography-guided and self-assembled conductive patterns offer highly promising methodology and tool for next-generation biomedical devices and various flexible/stretchable (wearable) devices.

6.
ACS Appl Mater Interfaces ; 9(1): 1021-1028, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27966907

ABSTRACT

Cost effective scalable method for uniform film formation is highly demanded for the emerging applications of 2D transition metal dichalcogenides (TMDs). We demonstrate a reliable and fast interfacial self-assembly of TMD thin films and their heterostructures. Large-area 2D TMD monolayer films are assembled at air-water interface in a few minutes by simple addition of ethyl acetate (EA) onto dilute aqueous dispersions of TMDs. Assembled TMD films can be directly transferred onto arbitrary nonplanar and flexible substrates. Precise thickness controllability of TMD thin films, which is essential for thickness-dependent applications, can be readily obtained by the number of film stacking. Most importantly, complex structures such as laterally assembled 2D heterostructures of TMDs can be assembled from mixture solution dispersions of two or more different TMDs. This unusually fast interfacial self-assembly could open up a novel applications of 2D TMD materials with precise tunability of layer number and film structures.

7.
Colloids Surf B Biointerfaces ; 146: 544-9, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27419649

ABSTRACT

This study introduces a new type of uniform liposome-analogous vesicle with a highly stable shell structure in which water-in-oil-in-water double emulsion drops fabricated in a capillary-based microfluidic device are used as templates. The vesicles developed in this work consist of a poly(ethylene glycol) hydrogel core surrounded by a polyurethane (PU) film between 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers. Subjecting the double emulsion templates to UV irradiation leads to the formation of a PU elastomer film between the DPPC layers. The presence of a thin PU film sandwiched between the DPPC layers is confirmed by confocal laser microscopy. The thicknesses of the PU films are measured to be approximately ∼4µm. Further study reveals the incorporation of the PU film between the DPPC layers remarkably improves the shell impermeability. Our vesicle system is expected to be useful for regulating the permeation of small molecules through lipid-based vesicular films.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Liposomes/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Elastomers/chemistry , Microfluidics/methods , Polyurethanes/chemistry
8.
ACS Appl Mater Interfaces ; 7(36): 20438-46, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26305487

ABSTRACT

We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H2), and disordered structure (inverse microemulsion, L2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanoparticles dispersions, enabling the large-scale production of the liquid crystalline nanoparticles for various biomedical applications.


Subject(s)
Lipids/chemistry , Liquid Crystals/chemistry , Nanostructures/chemistry , Fatty Alcohols/chemistry , Nanoparticles/chemistry , Poloxamer/chemistry , Scattering, Small Angle , Temperature , Vitamin E/chemistry , X-Ray Diffraction
9.
Chem Commun (Camb) ; 51(64): 12756-9, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26166162

ABSTRACT

Uniform hollow hydrogel microcapsules, composed of a graphene oxide platelet-patched shell, are fabricated in one step in a capillary-based microfluidic device. We demonstrate that patching a small amount of graphene oxide at the interfaces remarkably prevents the leakage of small molecules through the shell.


Subject(s)
Graphite/chemistry , Hydrogels/chemistry , Microfluidic Analytical Techniques/methods , Oxides/chemistry , Capsules , Permeability
10.
ACS Nano ; 8(9): 9073-80, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25145457

ABSTRACT

Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 µm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene.

11.
Nano Lett ; 14(3): 1388-93, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24524218

ABSTRACT

We report a remarkably rapid method for assembling pristine graphene platelets into a large area transparent film at a liquid surface. Some 2-3 layer pristine graphene platelets temporally solvated with N-methyl-2-pyrrolidone (NMP) are assembled at the surface of a dilute aqueous suspension using an evaporation-driven Rayleigh-Taylor instability and then are driven together by Marangoni forces. The platelets are fixed through physical binding of their edges. Typically, 8-cm-diameter circular graphene films are generated within two minutes. Once formed, the films can be transferred onto various substrates with flat or textured topologies. This interfacial assembly protocol is generally applicable to other nanomaterials, including 0D fullerene and 1D carbon nanotubes, which commonly suffer from limited solution compatibility.

12.
Adv Mater ; 26(1): 40-66, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24123343

ABSTRACT

Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized. An overview of the practical benefits from chemical modification/doping, including the controllability of electronic energy level, charge carrier density, surface energy and surface reactivity for diverse advanced applications is presented, namely flexible electronics/optoelectronics, energy conversion/storage, nanocomposites, and environmental remediation, with a particular emphasis on their optimized interfacial structures and properties. Future research direction is also proposed to surpass existing technological bottlenecks and realize idealized graphitic carbon applications.

13.
Colloids Surf B Biointerfaces ; 94: 51-7, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22326341

ABSTRACT

Tocopheryl acetate is used as the oil component of nanoemulsions using a mixture of unsaturated phospholipids and polyethylene oxide-block-poly(ε-caprolactone) (PEO-b-PCL). This study investigates the effects of the lipid-polymer composition on the size and surface charge of nanoemulsions, microviscosity of the interfacial layer, and skin absorption of tocopheryl acetate. The lipid-polymer hybrid system exhibits excellent colloidal dispersion stability, which is comparable to that of polymer-based nanoemulsions. If lipids are used as emulsifiers, nanoemulsions show poor dispersion stability despite a good skin absorption enhancing effect. The amount of tocopheryl acetate absorbed by the skin increases with an increased lipid-to-polymer ratio, as determined using the hairless guinea pig skin loaded in a Franz-type diffusion cell. An 8:2 (w/w) mixture of unsaturated phospholipids and PEO-b-PCL exhibits the most efficient delivery of tocopheryl acetate into the skin. Our results show that tocopheryl acetate is absorbed almost twice as fast by the lipid-polymer hybrid system than the nanoemulsions stabilized with PEO-b-PCL. This study suggests that the lipid-polymer hybrid system can be used as an effective means of optimizing nanoemulsions in terms of dispersion stability and skin delivery capability.


Subject(s)
Drug Carriers/chemistry , Phosphatidylcholines/chemistry , Polyesters/chemistry , Skin/metabolism , Tocopherols/pharmacokinetics , Animals , Chromatography, High Pressure Liquid , Diffusion Chambers, Culture , Drug Carriers/chemical synthesis , Emulsifying Agents/chemistry , Emulsions , Female , Guinea Pigs , In Vitro Techniques , Kinetics , Microscopy, Electron, Transmission , Nanoparticles , Polyesters/chemical synthesis , Skin Absorption , Static Electricity , Surface Properties , Tocopherols/chemistry , Viscosity
14.
Acta Biomater ; 7(10): 3719-28, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21704737

ABSTRACT

The mechanical stiffness of a hydrogel plays a significant role in regulating the phenotype of cells that adhere to its surface. However, the effect of hydrogel stiffness on cells cultured within its matrix is not well understood, because of the intrinsic inverse dependency between the permeability and stiffness of hydrogels. This study therefore presents an advanced biomaterial design strategy to decrease the inverse dependency between permeability and stiffness of a cell encapsulating hydrogel. Hydrogels were made by cross-linking poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) monoacrylate (PEGMA), with PEGMA acting as a pendant polymer chain. Increasing the mass fraction of PEGMA while keeping the total polymer concentration constant led to a decrease in the elastic modulus (E) of the hydrogel, but caused a minimal increase in the swelling ratio (Q). The size and hydrophobicity of the end groups of pendant PEG chains further fine tuned the dependency between Q and E of the hydrogel. Pure PEGDA hydrogels with varying molecular weights, which show the same range of E but a much greater range of Q, were used as a control. Fibroblasts encapsulated in PEGDA-PEGMA hydrogels displayed more significant biphasic dependencies of cell viability and vascular endothelial growth factor (VEGF) expression on E than those encapsulated in pure PEGDA hydrogels, which were greatly influenced by Q. Overall, the hydrogel design strategy presented in this study will be highly useful to better regulate the phenotype and ultimately improve the therapeutic efficacy of a wide array of cells used in various biology studies and clinical settings.


Subject(s)
Fibroblasts/cytology , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Hydrophobic and Hydrophilic Interactions/drug effects , Mechanical Phenomena/drug effects , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Cells, Immobilized/metabolism , Elastic Modulus/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fluorescence Recovery After Photobleaching , Mice , NIH 3T3 Cells , Permeability/drug effects , Polyethylene Glycols/pharmacology , Vascular Endothelial Growth Factor A/metabolism
15.
Langmuir ; 26(16): 13038-43, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695538

ABSTRACT

We introduce a new approach for stabilizing oil-in-water nanoemulsions using a semisolid interphase formed by the phase separation of amphiphilic block copolymers from the organic phase. This system is illustrated using an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL), with commonly used oils. PEO-b-PCL can be miscible with oil at elevated temperatures (70-80 degrees C); however, polymer/oil demixing occurs as the temperature drops below the melting temperature of PEO-b-PCL (approximately 55 degrees C). A homogeneous polymer/oil mixture was dispersed in water at 80 degrees C to generate embryonic emulsions, and then the emulsion size was reduced to a nanometer range through microfluidic homogenization. The structure of the generated nanoemulsions is irreversibly frozen as they are cooled down to ambient temperature. The nanoemulsions stabilized by PEO-b-PCL show the excellent colloidal stability against thermal and chemical stresses, exhibiting no significant changes in the size distribution during incubation for 4 months at ambient temperature or 10 days at 60 degrees C. This study demonstrates that PEO-b-PCL is an attractive emulsifying material for practical nanoemulsion formulations requiring structural stability under a broad range of conditions.


Subject(s)
Emulsions/chemistry , Nanotechnology/methods , Polyesters/chemistry , Microscopy, Electron, Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure
16.
J Colloid Interface Sci ; 351(1): 102-7, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20701920

ABSTRACT

Oil-in-water (O/W) emulsions are typically stabilized using water-soluble surfactants, which anchor to the surface of oil droplets dispersed in an aqueous solution. The structure of the anchored surfactants is often susceptible to physical and chemical stresses because of their highly mobile properties. Here we introduce a new approach to prepare stable silicone oil emulsions under various external stresses using a water-insoluble amphiphilic block copolymer, poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL). Above the melting temperature (around 60 degrees C) of the hydrophobic segment (PCL), PEO-b-PCL can be dissolved in silicone oil. When the polymer/oil mixture is dispersed in water, PEO-b-PCL is irreversibly reorganized into solid nanostructures at the interface of the aqueous/organic phases. The resulting interfacial structures provide a robust physical barrier to the emulsion coarsening processes. Accordingly, the prepared emulsions exhibit excellent structural tolerance against external stresses, including variations in pH, ionic strength, and temperature.


Subject(s)
Lactones/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Silicone Oils/chemistry , Surface-Active Agents/chemistry , Emulsions/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Particle Size , Surface Properties , Temperature , Water/chemistry
17.
Macromol Biosci ; 10(10): 1171-6, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20552607

ABSTRACT

This study reports a facile and practical means to non-invasively deliver biologically active ingredients through the skin using polymer-based nanocarriers. For this, polymer nanocapsules were fabricated with different surface charges as well as glass transition temperatures and we observed their ability to deliver the encapsulated active ingredient, coenzyme Q10, through the skin layer. Direct imaging of a probe molecule, Nile Red, and a matrix polymer labeled with fluorescence moiety, Lucifer Yellow, allowed us to demonstrate that the probe molecule readily permeates into the deep skin, while the matrix polymer stays in the stratum corneum layer due to electrostatic interactions. Quantitative characterization of the penetrating amount of coenzyme Q10 using the Frantz cell method proved that, to achieve improved delivery efficiency, the nanocapsule should have a low glass transition temperature as well as positive surface charges.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Nanocapsules , Polymers , Skin/metabolism , Animals , Biocompatible Materials , Drug Carriers/chemistry , Drug Carriers/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Guinea Pigs , Materials Testing , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Polymers/administration & dosage , Polymers/chemistry , Skin/cytology , Skin Absorption , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism
19.
Int J Pharm ; 388(1-2): 251-6, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20060459

ABSTRACT

We have studied how the transdermal delivery of lidocaine hydrochloride (LHC) is affected by the morphology of lipid carriers, liposomes and micelles, having the same lipid composition of 1-stearoyl-sn-glycero-3-phosphocholine (LPC) and cholesteryl hemisuccinate (CHEMS). In vitro drug permeation study, carried out on guinea pig skin, has revealed that the liposomes made of LPC and CHEMS significantly enhance the permeation rate of entrapped LHC; by contrast, the mixed micelles with the same composition decrease the degree of delivering co-existing LHC. Basically, we have also investigated the release kinetics of LHC through the cellulose membrane and found that both liposomes and micelles have a similar releasing profile. To experimentally demonstrate this unique behavior, we have observed the fluidity of stratum corneum liposomal membranes in the presence of either our liposomes or micelles. From this study, we have found that LPC/CHEMS liposomes fluidize the lipid membrane of stratum corneum lipids; however, lipid micelles rather make the membrane rigid. These findings highlight that controlling the morphology of drug carriers provides us with a means to modulate the permeability of encapsulated drug molecules.


Subject(s)
Drug Carriers/chemistry , Lidocaine/pharmacokinetics , Skin Absorption , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical/methods , Cholesterol Esters/chemistry , Guinea Pigs , In Vitro Techniques , Lidocaine/administration & dosage , Liposomes , Lysophosphatidylcholines/chemistry , Membrane Lipids/metabolism , Micelles , Permeability , Skin/drug effects , Skin/metabolism
20.
ACS Appl Mater Interfaces ; 1(6): 1159-62, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20355906

ABSTRACT

This study presents a microtubule that responds to a magnetic field. We made such a structure by incorporating iron oxide nanoparticles during the preparation of the microtubule. We found that the microtubule stretches its body when the magnetic field is applied and easily aligns with the direction of the applied magnetic field by rotating its body. When the magnetic field is removed, it loses its orientation and goes back to its original state by contraction. From the analysis of its magnetic response, we estimated that the magnetic microtubule had an elastic modulus of 33 MPa. Further analysis showed that the stretching and contracting of its body are due to its flexibility.


Subject(s)
Ferric Compounds/chemistry , Lipids/chemistry , Microtubules/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Crystallization/methods , Elastic Modulus , Electromagnetic Fields , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...