Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(17): 7825-7830, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37638642

ABSTRACT

Atomic layer deposition (ALD) is emerging as an efficient tool for the precise manufacture of catalysts, owing to its sophisticated surface tailoring capabilities. To overcome the techno-economic limitations of fuel cell electric vehicles (FCEVs), which are considered suitable alternatives to battery electric vehicles (BEVs), the development of cost-efficient high-performance catalysts is essential. In this study, we successfully fabricated a Pt-free cathode for a hydroxide exchange membrane fuel cell (HEMFC) with excellent oxygen reduction activity under extremely low loading of Ag electrocatalysts using ALD. Microstructural analysis confirmed that the surface modification by ALD-Ag nanoparticles exhibited excellent step coverage characteristics on porous carbon nanotubes (CNTs). An HEMFC comprising a CNT cathode surface-decorated with ALD-Ag nanoparticles delivered a high peak power density of 2154 mW mgAg-1 in an alkaline environment at 65 °C. This study demonstrates the applicability of ALD for the manufacture of highly active low-cost electrocatalysts for high-performance HEMFCs.

2.
Small ; 19(22): e2208149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36866499

ABSTRACT

This study reports the performance and durability of a protonic ceramic fuel cells (PCFCs) in an ammonia fuel injection environment. The low ammonia decomposition rate in PCFCs with lower operating temperatures is improved relative to that of solid oxide fuel cells by treatment with a catalyst. By treating the anode of the PCFCs with a palladium (Pd) catalyst at 500 °C under ammonia fuel injection, the performance (peak power density of 340 mW cm-2 at 500 °C) is approximately two-fold higher than that of the bare sample not treated with Pd. Pd catalysts are deposited through an atomic layer deposition post-treatment process on the anode surface, in which nickel oxide (NiO) and BaZr0.2 Ce0.6 Y0.1 Yb0.1 O3-δ (BZCYYb) are mixed, and Pd can penetrate the anode surface and porous interior. Impedance analysis confirmed that Pd increased the current collection and significantly reduced the polarization resistance, particularly in the low-temperature region (≈500 °C), thereby improving the performance. Furthermore, stability tests showed that superior durability is achieved compared with that of the bare sample. Based on these results, the method presented herein is expected to represent a promising solution for securing high-performance and stable PCFCs based on ammonia injection.

3.
ACS Appl Mater Interfaces ; 14(1): 1241-1248, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951299

ABSTRACT

All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.

4.
ACS Appl Mater Interfaces ; 12(31): 34806-34814, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32643369

ABSTRACT

The development of solid electrolytes (SEs) is a promising pathway to improve the energy density and safety of conventional Li-ion batteries. Several lithium chloride SEs, Li3MCl6 (M = Y, Er, In, and Sc), have gained popularity due to their high ionic conductivity, wide electrochemical window, and good chemical stability. This study systematically investigated 17 Li3MCl6 SEs to identify novel and promising lithium chloride SEs. Calculation results revealed that 12 Li3MCl6 (M = Bi, Dy, Er, Ho, In, Lu, Sc, Sm, Tb, Tl, Tm, and Y) were stable phase with a wide electrochemical stability window and excellent chemical stability against cathode materials and moisture. Li-ion transport properties were examined using bond valence site energy (BVSE) and ab initio molecular dynamics (AIMD) calculation. Li3MCl6 showed the lower migration energy barrier in monoclinic structures, while orthorhombic and trigonal structures exhibited higher energy barriers due to the sluggish diffusion along the two-dimensional path based on the BVSE model. AIMD results confirmed the slower ion migration along the 2D path, exhibiting lower ionic diffusivity and higher activation energy in orthorhombic and trigonal structures. For the further increase of ionic conductivity in monoclinic structures, Li-ion vacancy was formed by the substitution of M3+ with Zr4+. Zr-substituted phase (Li2.5M0.5Zr0.5Cl6, M = In, Sc) exhibited up to a fourfold increase in ionic conductivity. This finding suggested that the optimization of Li vacancy in the Li3MCl6 SEs could lead to superionic Li3MCl6 SEs.

5.
ACS Appl Mater Interfaces ; 11(11): 10608-10615, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30799602

ABSTRACT

In this work, we evaluated the oxygen evolution performance of cobalt oxide (CoO x)-coated carbon fiber paper in electrochemical water splitting. For a uniform coating of CoO x layers along the carbon fiber paper, the atomic layer deposition (ALD) technique was applied. We achieved a uniform and conformal coating of atomic-layer-deposited CoO x (ALD-CoO x) on the carbon fiber paper. The overpotential for oxygen evolution measured for the optimized ALD-coated carbon fiber paper was as low as 343 mV at 10 mA cm-2, which is competitive with the activity of state-of-the-art CoO x prepared on electrodes with large surface areas. Oxygen evolution is not enhanced after a critical thickness, about 28 nm in our study, is reached. The optimal thickness of the ALD-CoO x film is dependent on two competing effects: the high oxidation state of cobalt ions in thicker CoO x helps the oxygen evolution, whereas the introduction of a thick oxide coating decelerates the rate of charge transfer at the surface.

6.
ACS Appl Mater Interfaces ; 10(31): 26378-26386, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30003786

ABSTRACT

In the post-Moore era, it is well-known that contact resistance has been a critical issue in determining the performance of complementary metal-oxide-semiconductor (CMOS) reaching physical limits. Conventional Ohmic contact techniques, however, have hindered rather than helped the development of CMOS technology reaching its limits of scaling. Here, a novel conductive filament metal-interlayer-semiconductor (CF-MIS) contact-which achieves ultralow contact resistance by generating CFs and lowering Schottky barrier height (SBH)-is investigated for potential applications in various nanodevices in lieu of conventional Ohmic contacts. This universal and innovative technique, CF-MIS contact, forming the CFs to provide a quantity of electron paths as well as tuning SBH of semiconductor is first introduced. The proposed CF-MIS contact achieves ultralow specific contact resistivity, exhibiting up to ∼×700 000 reduction compared to that of the conventional metal-semiconductor contact. This study proves the viability of CF-MIS contacts for future Ohmic contact schemes and that they can easily be extended to mainstream electronic nanodevices that suffer from significant contact resistance problems.

7.
ACS Appl Mater Interfaces ; 9(45): 39347-39356, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29039185

ABSTRACT

In this work, we have successfully fabricated lanthanum strontium cobalt ferrite (LSCF)-gadolinium-doped ceria (GDC) composite cathodes by inkjet printing and demonstrated their functioning in solid oxide fuel cells (SOFCs). The cathodes are printed using a low-cost HP inkjet printer, and the LSCF and GDC source inks are synthesized with fluidic properties optimum for inkjet printing. The composition and microstructure of the LSCF and GDC layers are successfully controlled by controlling the color level in the printed images and the number of printing cycles, respectively. Anode-support type SOFCs with optimized LSCF-GDC composite cathodes synthesized by our inkjet printing method have achieved a power output of over 570 mW cm-2 at 650 °C, which is comparable to the performance of a commercial SOFC stack. Electrochemical impedance analysis is carried out to establish a relationship between the cell performance and the compositional and structural characteristics of the printed LSCF-GDC composite cathodes.

8.
ACS Appl Mater Interfaces ; 9(41): 35988-35997, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28952716

ABSTRACT

A metal-interlayer-semiconductor (M-I-S) structure with excellent thermal stability and electrical performance for a nonalloyed contact scheme is developed, and considerations for designing thermally stable M-I-S structure are demonstrated on the basis of n-type germanium (Ge). A thermal annealing process makes M-I-S structures lose their Fermi-level unpinning and electron Schottky barrier height reduction effect in two mechanisms: (1) oxygen (O) diffusion from the interlayer to the contact metal due to high reactivity of a pure metal contact with O and (2) interdiffusion between the contact metal and semiconductor through grain boundaries of the interlayer. A pure metal contact such as titanium (Ti) provides very poor thermal stability due to its high reactivity with O. A structure with a tantalum nitride (TaN) metal contact and a titanium dioxide (TiO2) interlayer exhibits moderate thermal stability up to 400 °C because TaN has much lower reactivity with O than with Ti. However, the TiO2 interlayer cannot prevent the interdiffusion process because it is easily crystallized during thermal annealing and its grain boundaries act as diffusion path. A zinc oxide (ZnO) interlayer doped with group-III elements, such as an aluminum-doped ZnO (AZO) interlayer, acts as a good diffusion barrier due to its high crystallization temperature. A TaN/AZO/n-Ge structure provides excellent thermal stability above 500 °C as it can prevent both O diffusion and interdiffusion processes; hence, it exhibits Ohmic contact properties for all thermal annealing temperatures. This work shows that, to fabricate a thermally stable and low resistive M-I-S contact structure, the metal contact should have low reactivity with O and a low work-function, and the interlayer should have a high crystallization temperature and a low conduction band offset to Ge. Furthermore, new insights are provided for designing thermally stable M-I-S contact schemes for any semiconductor material that suffers from the Fermi-level pinning problem.

9.
Nat Commun ; 8: 14553, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230080

ABSTRACT

In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

10.
ACS Omega ; 2(3): 806-813, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-31457472

ABSTRACT

In a recent report, we demonstrated that few-nanometer-thick yttria-stabilized zirconia (YSZ) coating on a porous Pt cathode of a solid oxide fuel cell is an excellent facilitator of oxygen reduction reaction (ORR) kinetics and an effective suppressor of Pt agglomeration. In this article, we reveal the actual role of the YSZ overcoat in the ORR process through a series of electrochemical analyses. Without the overcoat, the nanoporous Pt is significantly agglomerated during a high-temperature operation and the ORR becomes limited by the availability of triple phase boundaries (TPBs). An ultrathin YSZ overcoat prevents the ORR process from being limited by TPB area by preserving the morphology of its underlying Pt layer. More importantly, the overcoat acts as an excellent facilitator of the atomic-oxygen-species-mediated chemical process(es) that used to be rate-limiting in the ORR of a noncoated Pt/YSZ system.

11.
ACS Appl Mater Interfaces ; 8(51): 35419-35425, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27977113

ABSTRACT

A perfect ohmic contact formation technique for low-resistance source/drain (S/D) contact of germanium (Ge) n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed. A metal-interlayer-semiconductor (M-I-S) structure with an ultrathin TiO2/GeO2 interlayer stack is introduced into the contact scheme to alleviate Fermi-level pinning (FLP), and reduce the electron Schottky barrier height (SBH). The TiO2 interlayer can alleviate FLP by preventing formation of metal-induced gap states (MIGS) with its very low tunneling resistance and series resistance and can provide very small electron energy barrier at the metal/TiO2 interface. The GeO2 layer can induce further alleviation of FLP by reducing interface state density (Dit) on Ge which is one of main causes of FLP. Moreover, the proposed TiO2/GeO2 stack can minimize interface dipole formation which induces the SBH increase. The M-I-S structure incorporating the TiO2/GeO2 interlayer stack achieves a perfect ohmic characteristic, which has proved unattainable with a single interlayer. FLP can be perfectly alleviated, and the SBH of the metal/n-Ge can be tremendously reduced. The proposed structure (Ti/TiO2/GeO2/n-Ge) exhibits 0.193 eV of effective electron SBH which achieves 0.36 eV of SBH reduction from that of the Ti/n-Ge structure. The proposed M-I-S structure can be suggested as a promising S/D contact technique for nanoscale Ge n-channel transistors to overcome the large electron SBH problem caused by severe FLP.

12.
ACS Appl Mater Interfaces ; 8(44): 30090-30098, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27739300

ABSTRACT

Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 µm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

13.
Nanotechnology ; 27(26): 265301, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27188268

ABSTRACT

The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 âˆ¼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 âˆ¼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 âˆ¼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

14.
ACS Appl Mater Interfaces ; 8(14): 9097-103, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27029066

ABSTRACT

In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 µm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

15.
Nanotechnology ; 27(18): 185403, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27008979

ABSTRACT

We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers.

16.
Nanotechnology ; 25(43): 435404, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25299427

ABSTRACT

It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.

17.
Nanoscale ; 6(1): 433-41, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24212201

ABSTRACT

Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.

18.
ACS Nano ; 7(3): 2186-91, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23397972

ABSTRACT

Ion conducting oxides are commonly used as electrolytes in electrochemical devices including solid oxide fuel cells and oxygen sensors. A typical issue with these oxide electrolytes is sluggish oxygen surface kinetics at the gas-electrolyte interface. An approach to overcome this sluggish kinetics is by engineering the oxide surface with a lower oxygen incorporation barrier. In this study, we engineered the surface doping concentration of a common oxide electrolyte, yttria-stabilized zirconia (YSZ), with the help of atomic layer deposition (ALD). On optimizing the dopant concentration at the surface of single-crystal YSZ, a 5-fold increase in the oxygen surface exchange coefficient of the electrolyte was observed using isotopic oxygen exchange experiments coupled with secondary ion mass spectrometer measurements. The results demonstrate that electrolyte surface engineering with ALD can have a meaningful impact on the performance of electrochemical devices.

19.
Nano Lett ; 8(8): 2289-92, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18605702

ABSTRACT

A low temperature micro solid oxide fuel cell with corrugated electrolyte membrane was developed and tested. To increase the electrochemically active surface area, yttria-stabilized zirconia membranes with thickness of 70 nm were deposited onto prepatterned silicon substrates. Fuel cell performance of the corrugated electrolyte membranes released from silicon substrate showed an increase of power density relative to membranes with planar electrolytes. Maximum power densities of the corrugated fuel cells of 677 mW/cm2 and 861 mW/cm2 were obtained at 400 and 450 degrees C, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...