Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770534

ABSTRACT

Gas sensors applied in real-time detection of toxic gas leakage, air pollution, and respiration patterns require a reliable test platform to evaluate their characteristics, such as sensitivity and detection limits. However, securing reliable characteristics of a gas sensor is difficult, owing to the structural difference between the gas sensor measurement platform and the difference in measurement methods. This study investigates the effect of measurement conditions and system configurations on the sensitivity of two-dimensional (2D) material-based gas sensors. Herein, we developed a testbed to evaluate the response characteristics of MoS2-based gas sensors under a NO2 gas flow, which allows variations in their system configurations. Additionally, we demonstrated that the distance between the gas inlet and the sensor and gas inlet orientation influences the sensor performance. As the distance to the 2D gas sensor surface decreased from 4 to 2 mm, the sensitivity of the sensor improved to 9.20%. Furthermore, when the gas inlet orientation was perpendicular to the gas sensor surface, the sensitivity of the sensor was the maximum (4.29%). To attain the optimum operating conditions of the MoS2-based gas sensor, the effects of measurement conditions, such as gas concentration and temperature, on the sensitivity of the gas sensor were investigated.

2.
Nanoscale Res Lett ; 15(1): 175, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32886281

ABSTRACT

We developed a newly designed system based on in situ monitoring with Fourier transform infrared (FT-IR) spectroscopy and quadrupole mass spectrometry (QMS) for understanding decomposition mechanism and by-products of vaporized Cyclopentadienyl Tris(dimethylamino) Zirconium (CpZr(NMe2)3) during the move to process chamber at various temperatures because thermal decomposition products of unwanted precursors can affect process reliability. The FT-IR data show that the -CH3 peak intensity decreases while the -CH2- and C=N peak intensities increase as the temperature is increased from 100 to 250 °C. This result is attributed to decomposition of the dimethylamido ligands. Based on the FT-IR data, it can also be assumed that a new decomposition product is formation at 250 °C. While in situ QMS analysis demonstrates that vaporized CpZr(NMe2)3 decomposes to N-ethylmethanimine rather than methylmethyleneimine. The in situ monitoring with FT-IR spectroscopy and QMS provides useful information for understanding the behavior and decomposes of CpZr(NMe2)3 in the gas phase, which was not proven before. The study to understand the decomposition of vaporized precursor is the first attempt and can be provided as useful information for improving the reliability of a high- advanced ultra-thin film deposition process using atomic layer deposition in the future.

3.
ACS Omega ; 5(25): 15510-15518, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637826

ABSTRACT

Understanding of the long-term thermal stabilities of organic light-emitting diode (OLED) materials during film deposition is important to accurately identifying their processing windows. The thermal stresses imposed on OLED materials in the evaporation source during the deposition process may cause phase transition and/or degradation of the source materials, which results in variations in their purity and thermal properties, such as the vapor pressure and, ultimately, the device degradation. In this work, we designed a simple and efficient apparatus to determine the long-term thermal stability of OLED materials, which allows prolonged heating of a minimal amount of the sample (∼2 g) for 50 h even under high vacuum below 10-4 Pa where the organic powder samples easily and rapidly vaporized because of exposure to temperature above their deposition temperature. We used this apparatus to evaluate the thermal degradation behaviors of N,N'-bis(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB), which is a widely used hole-transporting material in OLEDs, upon prolonged exposure to various thermal stresses. After prolonged heating at 330 °C (380 °C) for 25 h (50 h), the change in purity, mass, vapor pressure, and phase of the heated NPB were analyzed by high-performance liquid chromatography, liquid chromatography-mass spectrometry, thermogravimetric analysis, and X-ray diffraction. The lifetime of OLEDs using the heated NPB was measured to study how the thermally induced material degradation affects the device characteristics. The results showed that the NPB degradation caused by prolonged exposure to 330 °C accelerated over time. In addition, it was confirmed that the degradation products with high molecular weight that form due to exposure to 380 °C was the main cause of device degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...